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Abstract

Assume we are asked to predict a real-valued variable yt based on

certain characteristics xt = (x1t , ..., x
m
t ), and on a database consisting

of (x1i , ..., x
m
i , yi) for i = 1, ..., n. Analogical reasoning suggests to com-

bine past observations of x and y with the current values of x to gen-

erate an assessment of y is similarity-weighted averaging. Specifically,

the predicted value of y, yst , is the weighted average of all previously

observed values yi, where the weight of yi, for every i = 1, ..., n, is the

similarity between the vector x1t , ..., x
m
t , associated with yt, and the

previously observed vector, x1i , ..., x
m
i . The “empirical similarity" ap-

proach suggests estimation of the similarity function from past data.
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We discuss this approach as a statistical method of prediction, study

its relationship to the statistical literature, and extend it to the esti-

mation of probabilities and of density functions.

1 Introduction

Reasoning by analogies is a basic method of predicting future events based on

past experience. Hume (1748), who famously questioned the logical validity

of inductive reasoning, also argued that analogical reasoning is the funda-

mental tool by which we learn from the past about the future. Analogical

reasoning has been widely studied in psychology and artificial intelligence

(see Schank (1986), Riesbeck and Schank (1989)), and it is very common in

everyday discussions of political and economic issues. Furthermore, it is a

standard approach to teaching in various professional domains such as medi-

cine, law, and business. However, analogical reasoning has not been explicitly

applied to statistics. The goal of this paper is to present an analogy-based

statistical method, and to explore its relationships to existing statistical tech-

niques.

Suppose that we are trying to assess the value of a variable yt based on

the values of relevant variables, xt = (x1t , ..., x
d
t ), and on a database consisting

of the variables (x1i , ..., x
d
i , yi) for i = 1, ..., n. For example, yt may be the

price of an antique piece of furniture, where xt denotes certain characteristics

thereof, such as its style, period, size, and so forth. Alternatively, yt may
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be an indicator variable, denoting whether a PhD candidate completes her

studies successfully, where xt specifies what it known about the candidate at

the time of admission, including such variables as GRE and GPE scores, the

ranking of the college the candidate graduated, etc.

How should we combine past observations of x and y with the current

values of x to generate an assessment of y? If we were to follow Hume’s idea,

we would need a notion of similarity, indicating which past conditions xi =

(x1i , ..., x
d
i ) were more similar and which xi’s were less similar to xt. We would

like to give the observations that were obtained under more similar conditions

a higher weight in the prediction of yt than those who were obtained under

less similar conditions. In the examples above, it makes sense to assess the

price of an antique by the price of other, similar antiques that have recently

be sold. Moreover, the more similar is a previous observation to the current

one — in terms of style, period, size, and even time of sale — the greater is the

weight we would like to put on this observation in the current assessment.

Similarly, in assessing the probability of success of a PhD candidate, it seems

desirable to put more weight on the observed outcomes involving more similar

candidate as compared to less similar ones.

In attempting to let previous cases matter for a current prediction prob-

lem, but to do so in varying degrees, a similarity-weighted average is arguably

the most natural formula. Formally,one may assume that there is a similarity

function s : Rd × Rd → R++ = (0,∞) such that, given a database (xi, yi)i≤n

and a new data point xt = (x1t , ..., x
d
t ) ∈ Rd, the estimate of yt is
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yst =

P
i≤n s(xi, xt)yiP
i≤n s(xi, xt)

(1)

Observe that, in case all similarity values are constant, this formula boils

down to a simple average of past observations. The sample average is ar-

guably the most basic and most widely used statistic. As such, the formula

(1) appears to be a minor variation on the averaging principle. Rather than

a simple average, we suggest to use a weighted one, where the weights reflect

the relevant similarity. If we consider a limiting case where the function s is

the indicator s∗(xi, xt) = 1 if xi = xt and s∗(xi, xt) = 0 otherwise, (1) be-

comes the conditional sample average of y, given that x = xt. Thus, (1) may

be viewed as a continuous family of formulae spanning the range between

the conditional and the unconditional average of past observations.

However, formula (1) is not the only way to simultaneously generalize

averaging and conditional averaging. Is it more or less reasonable than oth-

ers? What properties does it have? Such questions call for an axiomatic

treatment.

Gilboa and Schmeidler (1995, 2001) suggested an axiomatic theory of

case-based decision making. Gilboa and Schmeidler (2003) specialized the

general theory to prediction problems. Their approach studies the way that

possible predictions are ranked, as a function of the database of given ob-

servations. A key axiom in this paper is the so-called combination axiom,

stating that a ranking that follows from two disjoint databases should also
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follow from their union. The main result uses the combination axiom, coupled

with a few other axioms, to characterize a general prediction rule. It turns

out that several statistical techniques are special cases of this general rule.

In particular, kernel estimation of a density function, kernel classification,

and maximum likelihood estimation are such special cases.

The axiomatic approach to statistical problems allows one to study the

properties that characterize various techniques, to ask how reasonable these

techniques are, and to find similarities between them. For example, Gilboa

and Schmeidler (2003) discuss the combination axiom and attempt to come

up with general guidelines for the classification of applications in which it

may be reasonable. Such a discussion may enrich our understanding of the

statistical techniques that satisfy this axiom. Moreover, the axiomatic treat-

ment exposes similarities that may not be otherwise obvious, such as the

similarity between kernel classification and maximum likelihood estimation.

At the same time, the axiomatic analysis also makes it easier to come up with

“counter-examples", that is, with situations in which axioms are implausi-

ble, thereby delineating the scope of applicability of various techniques. In

particular, the combination axiom appears less compelling for time series

than it is for cross sectional datasets. Correspondingly, applying formula (1)

where t denoted time may be in appropriate.1We maintain that the axiomatic

approach may benefit statistical theory in general, because axioms may be

1In GLS (2006) we suggest that time series may be analyzed by defining similarities
over patterns, or sub-sequences of observations.
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viewed as criteria for the evaluation of statistical techniques in finite samples.

Applying the axiomatic approach to the problem at hand, Gilboa, Lieber-

man, and Schmeidler (GLS, 2006) axiomatized formula (1) for the case that y

is a real-valued variable, while Billot, Gilboa, Samet, and Schmeidler (BGSS,

2005) axiomatized it for the case that y is a multi-dimensional probability

vector. These papers do not assume that the similarity function is given.

Rather, they consider a certain observable measure — such as a likelihood

ordering or a probability assessment — and ask, how this observable mea-

sure varies with the database that is supposed to be input to the problem.

The axiomatizations impose certain constraints on the way the observable

measure varies with the input database, and prove that the constraints are

satisfied if and only if there exists a similarity function such that (1) holds.

The formula (1) may be used with any function s : Rd × Rd → R++.

Which function should we choose? GLS (2006) suggest to obtain the simi-

larity function from the data, selecting the function s that best fits the data.

The notion of “best fit" can be defined within a statistical model or other-

wise. A non-statistical approach, often used in machine learning, does not

specify a DGP. Rather, it selects a best-fit criterion such as minimal sum

of squared errors. Alternatively, the formula (1) can be embedded within a

statistical model, parametric or non-parametric. In either case, the optimal

s is computed from the data. (See details in Section 2 below.)

The right hand side of formula (1) is mathematically equivalent to a kernel

estimator of a non-parametric function, where the similarity function plays
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the role of the kernel. Thus, the axiomatic derivations of this formula in

GLS (2006) and BGSS (2005) may be viewed as axiomatizing kernel-based

non-parametric methods. If one takes GLS (2006) and BGSS (2005) as a

descriptive model of human reasoning, one might argue that the Nadaraya-

Watson estimator of an unknown function coincides with the way the human

mind has evolved to predict variables. Indeed, since the human mind is

supposed to be a general inference tool, capable of making predictions in

unknown environments, it stands to reason that it solves a non-parametric

statistical prediction problem.

The main contributions of the present paper are to relate the empirical

similarity approach to the statistical literature, and to extend it to the prob-

lem of density estimation, where the density of a variable yt is assumed to

depend on observable variables xt = (x1t , ..., x
d
t ).

Section 2 describes the empirical similarity statistical models. We devote

Section 3 to a more detailed discussion of the relationship between kernel-

based estimation and empirical similarity. We then briefly discuss the rela-

tionship of our method to spatial models in Section 4. Section 5 discusses the

case of a binary random variable. In Section 6 we apply our method to the

non-parametric estimation of a density function, and provide an axiomati-

zation of a “double-kernel" estimation method. Finally, Section 7 concludes

with a discussion of additional directions for future research.
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2 Empirical Similarity Models

Which function s : Rd × Rd → R++ best explains the database (xi, yi)i≤n?

This question, which may or may not be couched in a statistical model, would

take a different form depending on whether the data are naturally ordered.

If they are, such that for every i > j, (xi, yi) was realized after (xj , yj), it is

natural to consider the estimate of yi, for a given s, to be

ysi =

P
j<i s(xj , xi)yjP
j<i s(xj , xi)

. (2)

If, however, the order of the datapoints in (xi, yi)i≤n is arbitrary, it is

more natural to define

ysi =

P
j 6=i s(xj , xi)yjP
j 6=i s(xj , xi)

. (3)

In either case, the choice of the function s may be guided partly by the-

oretical considerations. Billot, Gilboa, and Schmeidler (2005) provide con-

ditions on similarity-weighted averages that are equivalent to the similarity

function taking the form

s(x, x0) = exp(− kx− x0k)

where k·k is a norm on Rd. For concreteness, we focus on the family of norms
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defined by weighted Euclidean distances.

sw (x, x
0) = exp (−dw(x, x0))

where w ∈ Rd
+ is a weight vector such that the distance between two vectors

x, x0 ∈ Rd is given by

dw (x, x
0) =

dX
j=1

wj

¡
xj − x0j

¢2
. (4)

Thus, the similarity function is known up to a d-dimensional vector of

parameters, one for each predictor.

In order to conduct statistical inference and to obtain qualitative results

by hypotheses tests, one may embed equations (2) and (3) within a statistical

model, viz.

yt =

P
i<t sw(xi, xt)yiP
i<t sw(xi, xt)

+ εt, (5)

and

yt =

P
i6=t sw(xi, xt)yiP
i6=t sw(xi, xt)

+ εt, (6)

respectively, where {εt} are iid (0, σ2).

Model (5) can be interpreted as an explicit causal model. Consider, for

example, a process of price formation by case-based economic agents. These

agents determine the prices of unique goods such as apartments or art pieces

according to the similarity of these goods to other goods, whose prices have
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already been determined in the past.2 Thus, (5) can be thought of as a

model of the mental process that economic agents engage in when determin-

ing prices. The estimation of sw in such a model is thus an estimation of

a similarity function that presumably causally determines the observed y’s.

The asymptotic theory for this model was developed by Lieberman (2005).

Model (6) cannot be directly interpreted in the same way. Because the

distribution of each yt depends on all the other yi’s (6) cannot be a temporal

account of the evolution of the process. However, such interdependencies

may be quite natural in geographical, sociological, or political data, as is

common in spatial statistics (see section 4 below).

Both models (5, 6) assume that the similarity function is fixed and does

not change with the realizations of yt, nor with t itself. They rely on the

axiomatizations in GLS (2006) and in BGSS (2005). Each of these axiomati-

zations, like Gilboa and Schmeidler (2001, 2003), uses a so-called “combina-

tion" (or “concatenation") axiom.3 Whereas axioms of this type may appear

reasonable at first, they are rather restrictive. Gilboa and Schmeidler (2003)

contains an extensive discussion of such an axiom and its limitations, and the

latter apply to all versions of the axiom, including those that appear in GLS

(2006) and in BGSS (2005). For our purposes, it is important to note that

the combination axiom does not allow one to learn the similarity function

from the data. Correspondingly, formula (1) does not allow the similarity

2See Gayer, Gilboa, and Lieberman (2004).
3A variant of this axiom is also used in the axiomatization in section 6.

10



function to change with the accumulation of data. But the basic idea of

“empirical similarity" is precisely this, namely, that the similarity function

be learnt from the same data that are used, in conjunction with this simi-

larity function, for generating predictions. Hence, the axiomatic derivations

mentioned above are limited. Similarly, formula (1) calls for a generalization

that would allow it to refine the similarity assessment, and the statistical

models (5, 6) should be accordingly generalized.

3 Empirical Similarity and Kernel-BasedMeth-

ods

For clarity of exposition, we start with the unidimensional case, that is,

when d = 1 and there is only one explanatory variable X. A nonparametric

regression model assumes a DGP of the following type

yi = m (xi) + εi, (i = 1, ..., n) , (7)

εi ∼ iid
¡
0, σ2

¢
,

where xi is a scalar and m : R → R is the unknown function relating X to

Y . A widely-used nonparametric estimator of m (·) is the Nadaraya-Watson

estimator, defined as

m̂ (xt) =

Pn
i=1K

¡
xi−xt
h

¢
yiPn

i=1K
¡
xi−xt
h

¢ , (8)
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where K (x) is a kernel function, that is, a non-negative function satisfyingR
K (z) dz = 1, as well as other regularity conditions, and h is a bandwidth

parameter. For instance, if we choose the Gaussian kernel, then

1

h
K

µ
xi − xt

h

¶
=
¡
2πh2

¢−1/2
exp

Ã
−(xi − xt)

2

2h2

!
. (9)

The choice of h is central in the nonparametric literature, because there is

a trade-off between variance and bias. One of the most common criteria for

the selection of an optimal bandwidth is to minimize the mean integrated

squared error (MISE). That is, the optimal h satisfies

h∗ = argmin
h

Ef0

Z
(m̂ (x)−m (x))2 dx

where the expectation is taken under the true density f0 of y. If x is countable

and m (x) is replaced by y, then we end up with a minimum expected sum

of squared errors criterion.

We now turn to discuss the connection between kernel-based estimation

and empirical similarity. As described above, the empirical similarity method

suggests predicting yt by

yt =

Pn
i=1 sw (xi, xt) yiPn
i=1 sw (xi, xt)

,
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where

sw (xi, xt) = exp (−dw)

= (π/w)1/2
"

1¡
1/
√
2w
¢K µ

xi − xt

1/
√
2w

¶#
,

dw was defined in (4), and K is given in (9). Then,

Pn
i=1 sw (xi, xt) yiPn
i=1 sw (xi, xt)

=

Pn
i=1K

³
xi−xt
1/
√
2w

´
yiPn

i=1K
³

xi−xt
1/
√
2w

´ .

It follows that, in this setting,

h = 1/
√
2w.

Thus, we have a direct mapping from the similarity parameter to the band-

width parameter. Among other things, we can set w∗ to satisfy the MISE

criterion.

Despite the similarity between kernel-based estimation and empirical sim-

ilarity, there is a fundamental difference between them. The former is a

statistical technique that is used, among other things, for the estimation of

model (7). By contrast, in models (5, 6) we use the formula (1) as part of

the data generating process itself.

This difference is accentuated when we focus on the ordered case. We
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can re-write model (5) as

yj = m̂w
(j−1) (xj) + εj , (j = 2, ..., n) ,

where m̂w
(j−1) (xj) is defined as in (8), restricted to the observations that

precede j, namely

m̂w
(j−1) (xj) =

Pj−1
i=1 sw (xi, xj) yiPj−1
i=1 sw (xi, xj)

. (10)

Model (7) assumes that the distribution of yt is a function of xt alone.

If the function m were known, the best predictor of yt given xt would have

been m(xt), independent of previous realizations of x and of y. In other

words, model (7) specifies a rule, m, relating xt to yt. This is not the case for

model (5). In this model, the data generating process is case-based, where

the distribution of yt depends on all past and present realizations of x, as

well as all past realizations of y.

Observe that this difference also has an implication regarding the type of

questions that are raised about the parameters w or h. In (7), the parameter

h is chosen optimally, so as to minimize an expected loss function. It has a

purely statistical purpose andmeaning. But in (5, 6), w has a model meaning.

Similar to a regression parameter, w may have an economic, psychological, or

other substantial meaning having to do with the interpretation of the model.
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Indeed, in GLS we develop tests for hypothesis of the form4

H0 : w = 0.

That is, in this model “what is the true value of w?" is a meaningful question,

whereas in (7) one may only ask, “what is a useful value of h?".

Despite these differences, the mathematical connections established above

suggest that one may also use the empirical similarity approach to predict

the value of y even though, in reality, the true DGP is (7). One would

then expect the empirical similarity function to become “tighter" with an

increase in the database size. To consider an extreme example, assume that

a database is replicated in precisely the same way a large number of times.

For every past observation (xi, yi) there will be many identical observations,

and the similarity function that best explains existing data will be one with

infinite w, that is, a similarity function that ignores all but the identical x

values.5

The discussion above generalizes to higher dimensions (d > 1) without

any fundamental modifications. Kernel estimation is used for estimation of

a non-parametric model (7) where x is multi-dimensional, and the models
4Under the hypothesis that w = 0, Sw (xi, xj) = 1 for all i and j. This suggests that y

is not influenced by x — past values of y are relevant to its current evaluation irrespective
of the x values that were associated with them. Mathematically, setting w = 0 yields the
same prediction as using a kernel approach with h =∞, where for every x, y is evaluated
by a simple average of all past y’s.

5In fact, two replications would suffice for the above argument. But a large number of
replications would have a similar impact even if the database is not replicated in precisely
the same way.
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(5, 6) have also been formulated for a multi-dimensional x. Indeed, similar

relationship exist between the kernel bandwidth parameters and the weights

that determine the similarity function. Specifically, if we specify

sw (xi, xt) = exp (−dw)

= (2π)d/2 (det (W ))1/2
h
(det (W ))−1/2K (xi − xt;W )

i
, (11)

whereW−1 is a diagonal matrix with elements 2wj, j = 1, ..., d, and the term

in the square brackets of (11) integrates to one. In this setting

Pn
i=1 sw (xi, xt) yiPn
i=1 sw (xi, xt)

=

Pn
i=1K (xi − xt;W ) yiPn
i=1K (xi − xt;W )

,

where the j-th bandwidth hj is equal to 1/
p
2wj.

The bulk of the literature on multivariate kernels focuses only on one

bandwidth parameter, but there is no conceptual difficulty in optimizing a

multi-dimensional bandwidth. This, indeed, has been discussed by Yang and

Tchernig (1999). As in the univariate case, we find the same conceptual

differences between the empirical similarity model and kernel estimation. In

particular, the empirical similarity model allows one to test hypotheses of

the form

H0 : wj = 0

suggesting that variable xj is immaterial in similarity judgments. Rejecting

such an hypothesis constitutes a statistical proof that the variable xj matters
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for the assessment of y. By contrast, a kernel function that is not part of the

DGP does not render itself to the testing of similar qualitative hypotheses.

4 Empirical Similarity and Spatial Models

The general spatial model can be written in at least two ways, in each case

leading to a different likelihood. Besag (1974, p. 201, see also Cressie 1993)

describes the two possibilities. First, the conditional density of yi given

y−i = (y1, ..., yi−1, yi+1, ..., yn) is specified as

pi (yi|y−i) =
¡
2πσ2

¢−1/2
exp

⎡⎣− 1

2σ2

(
yi − µi −

X
j 6=i

βi,j
¡
yj − µj

¢)2⎤⎦ .
This results in the following joint density y = (y1, ..., yn):

p (y) =
¡
2πσ2

¢−n/2 |B|1/2 exp ∙− 1

2σ2
(y − µ)0B (y − µ)

¸
,

where [B]i,i = 1, [B]i,j = [B]j,i = −βij and B is positive definite. Alterna-

tively, one can assume that

E (yi|y−i) = µi +
X
j 6=i

βi,j
¡
yj − µj

¢
.
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For example, this holds for the model

yi = µi +
X
j 6=i

βi,j
¡
yj − µj

¢
+ εi,

where ε1, ..., εn are iid normal variables with zero mean and variance σ2. In

this case the joint density is

p (y) =
¡
2πσ2

¢−n/2 |B| exp ∙− 1

2σ2
(y − µ)0B0B (y − µ)

¸
. (12)

It is required that B is positive definite. Note that if we define

[B]i,j = −
sw(xi, xj)P
j 6=i sw(xi, xj)

,

then (12) is the joint density of y in the similarity model (6). This model is

also entitled conditional autoregression (or CAR).

These spatial models resemble models (5, 6). The latter may appear

more restrictive than the spatial model, because the similarity function sw

specifies a particular functional form for the coefficients βi,j (and, in 5, there

are additional constraints that βi,j = 0 for i < j). However, in most spatial

applications (e.g., Anselin (1998)) the βi,j’s are taken to be fixed and given

whereas in models (5, 6) the coefficients are not assumed known. Rather,

they are functions of the x’s and the w’s and therefore, they are ultimately

estimated from the data.
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5 Probability Estimation

GLS (2006) also propose using the empirical similarity approach for the esti-

mation of probabilities. Such probabilities may be used in a decision problem,

employing expected utility maximization or some other decision procedure

that is probability-based, such as median-utility maximization. Our focus at

this point is on probabilities per se.

In this context, yt ∈ {0, 1}, as in the example of success in a PhD program

mentioned above. GLS develop the likelihood function for the ordered model,

in which the probability that yt = 1 depends only on past observations, yi

for i < t, and this probability is taken to be the similarity-weighted average

of these past observations, namely, the similarity-weighted frequency of 1’s

in the past:6

psw (yt = 1|x1, ..., xt, y1, ..., yt−1) =
P

i<t sw (xi, xt) yiP
i<t sw (xi, xt)

. (13)

However, there are many applications in which the given data are not

ordered in any natural way. In this case, one may assume that the probability

6GLS also allow the probability to depend on this similarity-weighted frequency in
a monotone way. The more specific assumption, namely, that the similarity-weighted
frequency is the probability, suggests an interpretation of “probability" that generalizes
the frequentist definition, while retaining its intuitive appeal. However, this model cannot
describe how the process starts and generates both 0’s and 1’s.
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that each data point yt, t = 1, ..., n, equals 1 is given by

psw (yt = 1|x1, ..., xn, y1, ..., yt−1, yt+1, ..., yn) =
P

i6=t sw (xi, xt) yiP
i6=t sw (xi, xt)

. (14)

If p (yi) = p for all i, then psw (yt = 1|·) is evidently unbiased for p. To estimate

w, we can use the idea of likelihood cross-validation, as follows. First, we

define

psw,−i (yi = 1|x1, ..., xn, y1, ..., yi−1, yi+1, ..., yn) =
P

j 6=i sw (xj , xi) yjP
j 6=i sw (xj, xi)

,

for i, j = 1, .., n, which is the leave-yi-out cross-validation first step. At the

second stage of the procedure we obtain

ŵCV = argmax
w

nX
i=1

log
¡
psw,−i (yi = 1|x1, ..., xn, y1, ..., yi−1, yi+1, ..., yn)

¢
.

Finally, for a new data point t = n+ 1, we estimate (13) by

p̂ŵCV (yt = 1|x1, ..., xn, xt, y1, ..., yn) =
Pn

i=1 sŵCV (xi, xt) yiPn
i=1 sŵCV (xi, xt)

.

Note the difference between this procedure and the one discussed in Silverman

(1986, pp. 124-125). In our notation, Silverman’s equation (6.7) reduces to

p̂ (yt = 1) =
λ

n

nX
i=1

µ
1− λ

λ

¶(yi−yt)2
(15)
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where λ is a parameter, assumed to lie in [1/2, 1], to be estimated by likeli-

hood cross-validation. That is,

λ̂CV = argmax
λ

nX
i=1

log (p̂−i (yi = 1))

with

p̂−i (yi = 1) =
λ

n

X
j 6=i

µ
1− λ

λ

¶(yj−yi)2
.

Unlike the case of nonparametric estimation of m (x) with unordered data,

it is not apparent how we can map λ into w. Also, with the “right" choice of

sw it might be possible to find a similarity-based predicted probability which

outperforms (15) in terms of the sum of squared errors.

6 Double Kernel Density Estimation

Suppose that one wishes to estimate the density function of a real-valued

variable y, where this density is assumed to depend on the values of other

real-valued variables x = (x1, ..., xd). Assume that the jth past observation

is a vector (x1j , ..., x
d
j , yj) ∈ Rd+1, j = 1, ..., t− 1. A new datapoint xt ∈ Rd is

given. How should we estimate the density of y given xt?

Kernel estimation of a density function is a well-known and widely used

technique for the case in which there are no explanatory variables x1, ..., xd.

(See Akaike (1945), Rosenblatt, (1956), Parzen (1962), Silverman (1986),

Scott (1992).) It is therefore a natural candidate for a starting point. One
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can therefore ask a more concrete question: how can we generalize kernel

estimation to the current problem, in which the density of y is assumed to

depend on the realization of the variables x1, ..., xd?

Gilboa and Schmeidler (2003) used a “combination" axiom to derive ker-

nel estimation of a density function for the standard case, in which there are

no explanatory variables. As mentioned above, variants of this combination

axiom are at the heart of the derivation of the similarity-weighted averages in

BGSS (2005) and GLS (2006). It therefore appears coherent to estimate the

density of y by a kernel method, but to allow the kernel to depend on the ex-

planatory variables x1, ..., xd in a way that resembles the similarity-weighted

average used above.

Specifically, assume that there exists a function s : Rd×Rd → R++, where

s(xt, xj) measures the degree to which data point xt ∈ Rd is similar to data

point xj ∈ Rd, and a kernel function K : R→ R+, i.e., a symmetric density

function which is non-increasing on R+. For a database
¡
(x1j , ..., x

d
j , yj)

¢
j<t
,

consider the following formula,

ft(y) =

P
j<t s(xj, xt)K(y − yj)P

j<t s(xj , xt)
(16)

This formula is a (s-)similarity-weighted average of the kernel functions

K(yj − y). Thus, each observation yj is thought of as inducing a density

function Kyj(y) = K(yj−y) centered around yj. These density functions are

aggregated so that the weight of K(yj − y) in the assessment of the density

22



of yt is proportional to the degree that the data point xj is similar to the

new data point xt.

As in the other models discussed above, two special cases of (16) may be

of interest. First, assume that s is constant. This is equivalent to suggest-

ing that all past observations are equally relevant. In this case, (16) boils

down to classical kernel estimation of the density f (ignoring the variables

x1, ..., xd). Another special case is given by s(xt, xj) = 1{xt=xj}.
7 In this case,

(16) becomes a standard kernel estimation of f given only the sub-database

defined by xt. Thus, formula (16) may be viewed as offering a continuous

spectrum between the unconditional kernel estimation and conditional kernel

estimation given xt.

In this section we justify the formula (16) on axiomatic grounds and

develop a procedure for its estimation. We start with the axiomatic model,

considering the estimated density as a function of the database. We then

proceed to interpret the formula we obtain as a data-generating process.

This implies that the functions s and K, whose existence follows from the

axioms, can be viewed as functions of unknown parameters of a distribution,

and thus as the object of statistical inference. We proceed to develop the

statistical theory for the estimation of these functions.

7We assume that the function s is strictly positive. This simplifies the analysis as one
need not deal with vanishing denomintaors. Yet, for the purposes of the present discussion
it is useful to consider the more general case, allowing zero similarity values. This case is
not axiomatized in this paper.
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6.1 Axiomatization

Let F be the set of continuous, Rieman-integrable density functions on R.8

Let C = Rd+1 be the set of possible observations. C may be an abstract set

of arbitrarily large cardinality. A database is a sequence of cases, D ∈ Cn for

n ≥ 1. The set of all databases is denoted C∗ = ∪n≥1Cn. The concatenation

of two databases, D = (c1, ..., cn) ∈ Cn and E = (c01, ..., c
0
t) ∈ Ct is denoted

by D ◦ E and it is defined by D ◦ E = (c1, ..., cn, c
0
1, ..., c

0
t) ∈ Cn+t. Observe

that the same element of C may appear more than once in a given database.

Fix a prediction problem, xt ∈ Rd. We suppress it from the notation

through the statement of Theorem 1. For each D ∈ C∗, the predictor has a

density f(D) ∈ F reflecting her beliefs over the value of yt in the problem

under discussion. Thus, we study functions f : C∗ → F , and our axioms will

take the form of consistency requirements imposed on such functions.

For n ≥ 1, let Πn be the set of all permutations on {1, ..., n}, i.e., all

bijections π : {1, ..., n}→ {1, ..., n}. For D ∈ Cn and a permutation π ∈ Πn,

let πD be the permuted database, that is, πD ∈ Cn is defined by (πD)i =

Dπ(i) for i ≤ n.

We formulate the following axioms.

A1 Order Invariance: For every n ≥ 1, every D ∈ Cn, and every

permutation π ∈ Πn, f(D) = f(πD).

A2 Concatenation: For every D,E ∈ C∗, f(D ◦ E) = λf(D) + (1 −

λ)f(E) for some λ ∈ (0, 1).
8Our results can be extended to Rm with no major complications.
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Almost identical axioms appear in BGSS (2005). They deal with proba-

bility vectors over a finite space, rather than with densities. In their model,

for every database D there exists a probability vector p(D) in a finite-

dimensional simplex, and the axioms they impose are identical to A1 and

A2 with p playing the role of f .

The Order Invariance axiom states that a permuted database will result

in the same estimated density. This axiom is not too restrictive provided

that the variables x = (x1, ..., xd) specify any relevant information (such as

the time at which the observation was made). The Concatenation axiom

has the following behavioral interpretation. Assume that, given database D,

an expected utility maximizer has to make decisions, where the state of the

world is y ∈ R, and assume that her beliefs are given by the density f(D).

The Concatenation axiom is equivalent to saying that, for any integrable

bounded utility function, if act a has a higher expected utility than does act

b given each of two disjoint databases D and E, then a will be preferred

to b also given their union D ◦ E. Equivalently, the Concatenation axiom

requires that, for any two integrable bounded functions ϕ, ψ : R→ R, if

the expectation of ϕ(y) is at least as large as that of ψ(y) given each of

two disjoint databases D and E, then this inequality holds also given their

union D ◦E. This axioms is a variation of the Combination axiom in Gilboa

and Schmeidler (2003), where it is extensively discussed. In particular, the

Combination axiom is unlikely to hold when the data are likely to reflect

patterns. Thus, when time series are involved, a straightforward application
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of our method may lead to poor predictions.

The following theorem is an adaptation of the main result of BGSS (2005)

to our context.

Theorem 1 Let there be given a function f : C∗ → F and assume that not

all {f(D)}D∈C∗ are collinear. Then the following are equivalent:

(i) f satisfies A1 and A2;

(ii) There exists a function f0 : C → F , and a function s : C → R++

such that, for every n ≥ 1 and every D = (c1, ..., cn) ∈ Cn,

f(D) =

P
j≤n s(cj)f0(cj)P

j≤n s(cj)
. (∗)

Moreover, in this case the function f0 is unique, and the function s is

unique up to multiplication by a positive number.

Recall that the discussion has been relative to a new datapoint xt, and

that cj = (x1j , ..., x
d
j , yj). Abusing notation, we write (xj , yj) for (x

1
j , ..., x

d
j , yj).

Thus, an explicit formulation of (∗) would be

f(D, xt)(y) =

P
j≤n s ((xj, yj), xt) f0((xj , yj))(y)P

j≤n s ((xj , yj), xt)
. (17)

We interpret this formula as follows. Let s ((xj , yj), xt) be the degree to

which past observation (xj , yj) is considered to be relevant to the present

datapoint xt. We would like to think of this degree of relevance as the

similarity of the past case to the present one. Let f0((xj, yj))(y) be the value
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of the density function, given a single observation (xj , yj), at the point y.

Then, given database D, the estimated density of y is a similarity-weighted

average of the densities f0((xj , yj))(y) given each past observation, where

more similar observation get proportionally higher weight in the average.

We now make the following additional assumptions: (i) the similarity

function depends only on the variables x = (x1, ..., xd), thus, s ((xj , yj), xt) =

s (xj, xt); (ii) the density function f0((xj, yj))(y) does not depend on xj, i.e.,

f0((xj, yj))(y) = f0(yj)(y); and (iii) the density f0(yj)(y) is a non-increasing

function of the distance between yj and y, that is, f0(yj)(y) = K(yj − y) for

a kernel function K ∈ F .9 Under these assumptions, (17) boils down to (16).

We refer to (17) as a “double-kernel" density function: each observation

yj for predictor values xj affects the density of y values that are close to yj,

and it does so not only for the density of y given the specific xj, but also for

values of x that are close to xj.

6.2 Statistical Analysis

The formula (16) can be viewed either parametrically or nonparametrically.

If the former approach is taken, then (16) is assumed to be correctly specified

up to a finite dimensional vector of parameters ψ = (w1, . . . , wd, θ1, . . . , θr)
0

where w1, ..., wd are the weights of the similarity function as above, and

θ1, . . . , θr are parameters that specify the kernel function K. To estimate

9These simplifying assumptions can be written in terms of axioms on f : C∗ → F .
However, this translation is straightforward and therefore omitted.
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this model, let Ft = σ (x1, · · · , xt, y1, · · · , yt−1) and assume that the true

conditional density of yt, given Ft−1, is given by

ft (y;ψ) =

P
j<t sw (xt, xj)Kθ (y − yj)P

j<t sw (xt, xj)
, t = 2, 3, ..., n.

The joint density of the y = (y1, ..., yn), conditional on x = (x1, ..., xn), is

f (y;ψ) =
nY
t=1

ft (yt;ψ)

=
nY
t=1

P
j<k sw (xt, xj)Kθ (yt − yj)P

j<t sw (xt, xj)
.

We can proceed with any classical approach, such as maximum likelihood

estimation, where the MLE of ψ is defined as

ψ̂ = argmax
ψ

nX
t=1

log

P
j<k sw (xt, xj)Kθ (yt − yj)P

j<t sw (xt, xj)
.

Then, the estimated conditional density of yt is ft
³
y; ψ̂

´
.

Alternatively, we can take a nonparametric approach, viewing (16) as a

nonparametric conditional density estimator. If we consider a kernel function

given up to a single bandwidth parameter h, we obtain the following double-

kernel, adaptive non-parametric density estimator,

ft (y) =

P
j<t sw (xt, xj)K

¡y−yj
h

¢
h
P

j<t sw (xt, xj)
. (18)
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depending on d+ 1 parameters, w1, ..., wd, h. In the special case where w1 =

... = wd = 0 (i.e., when all the sw’s are equal), the formula reduces to the

usual kernel density estimate

ft (y) =
1

(t− 1)h

t−1X
j=1

K

µ
y − yj
h

¶
.

In order to make (18) operational, we can choose h and w jointly so as to

satisfy any reasonable criterion, such as the minimum of the MISE.

7 Discussion

Analogical reasoning is a cornerstone of human intelligence. Axiomatic treat-

ments of such reasoning have resulted in the empirical similarity approach we

discuss here. The formulae used in this approach turn out to be very similar

to kernel methods in statistics. While the differences between the empirical

similarity approach and kernel methods should not be underestimated, the

striking similarity between the formulae used in both method is probably not

coincidental.

Our findings suggest that a closer interaction between statistical theory

and axiomatic decision theory may be fruitful for both disciplines. Statistical

techniques may be interpreted as models of human reasoning and decision

making. Just as kernel techniques may be viewed as formal models of rea-

soning by analogies, other statistical methods may also inform us regarding
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the way people think. In particular, regression analysis suggests a simple

model of reasoning that goes beyond mere analogies to the identification of

trends. It appears obvious that decision makers engage in such reasoning,

and decision theory should incorporate it into its formal models.

Conversely, the axiomatic approach may further our understanding of

statistical techniques and help us see connections among them. For instance,

we find that a basic principle, namely the combination axiom, appears to

be at the foundation of several techniques, such as kernel estimation, kernel

classification, likelihood maximization as well as the empirical similarity ap-

proach. Studying the underlying principles of various methods may suggest

new ways to combine them in order to tackle new problems.
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8 Appendix: Proof of Theorem 1

The necessity of the axioms is straightforward. We now prove sufficiency.

Consider the sequence of partitions of R defined by

Pm = {(−∞,−m), [m,∞)} ∪

{ [T + l

2m
, T +

l + 1

2m
) |

−m ≤ T ≤ m− 1, (19)

0 ≤ l ≤ 2m − 1 }

Thus, Pm contains m2m+1+2 intervals, of which two are infinite. For f ∈ F ,

let fm be the distribution induced by f on Pm. Specifically, for A ∈ Pm,

fm(A) =
R
A
f(y)dy. Observe that, for every f ∈ F , max{fm(A) |A ∈ Pm}→

0 as m→∞.

Fix Pm and consider fm(D) for D ∈ C∗. Observe that fm satisfies the

axioms of BGSS (2005). Hence for every m ≥ 1 there exists a function

sm : C → R++ such that, for every n ≥ 1, every D = (c1, ..., cn) ∈ Cn, and

every A ∈ Pm,

fm(D)(A) =

P
j≤n sm(cj)fm(cj)(A)P

j≤n sm(cj)
. (20)

It follows that (20) holds also for every event A that is Pm-measurable.

Consider two consecutive partitions, Pm and Pm+1. Since every event A ∈ Pm

is also Pm+1-measurable, we conclude that , for every n ≥ 1, every D =
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(c1, ..., cn) ∈ Cn, and every A ∈ Pm,

fm+1(D)(A) =

P
j≤n sm+1(cj)fm+1(cj)(A)P

j≤n sm+1(cj)
. (21)

However, fm+1(D)(A) = fm(D)(A) =
R
A
f(D)(y)dy and fm(cj)(A) =

fm+1(cj)(A) =
R
A
f(cj)(y)dy. Combining these with (20) and (21) we con-

clude that sm+1 can replace sm in (20). By the uniqueness result of Billot

et al. (2004), sm+1 is a multiple of sm. Without loss of generality, we may

assume that sm+1 = sm. Thus, these exists a function s : C → R++, and, for

each c ∈ C, a density f(c) ∈ F , such that, for every m ≥ 1, for every n ≥ 1,

every D = (c1, ..., cn) ∈ Cn, and every A ∈ Pm,

fm(D)(A) =

P
j≤n s(cj)f(cj)(A)P

j≤n s(cj)
. (22)

Next consider an arbitrary finite interval (u, v) (where −∞ ≤ u < v ≤

∞). Observe that, for every n ≥ 1 and every D = (c1, ..., cn) ∈ Cn,

f(D)((u, v)) = lim
m→∞

X
{A∈Pm|A⊂(u,v)}

fm(D)(A)

= lim
m→∞

X
{A∈Pm|A⊂(u,v)}

P
j≤n s(cj)f(cj)(A)P

j≤n s(cj)

= lim
m→∞

X
j≤n

s(cj)P
j≤n s(cj)

X
{A∈Pm|A⊂(u,v)}

f(cj)(A)
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=
X
j≤n

s(cj)P
j≤n s(cj)

lim
m→∞

X
{A∈Pm|A⊂(u,v)}

f(cj)(A)

=
X
j≤n

s(cj)P
j≤n s(cj)

f(cj)((u, v))

hence (∗) is proved.

Finally, the uniqueness of f is obvious, and the uniqueness of s (up to

multiplication by a positive number) follows from the uniqueness result in

BGSS (2005). ¤
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