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Abstract

We suggest to define objective probabilities by similarity-weighted
empirical frequencies, where more similar cases get a higher weight in
the computation of frequencies. This formula is justified intuitively
and axiomatically, but raises the question, which similarity function
should be used? We propose to estimate the similarity function from
the data, and thus obtain objective probabilities. We compare this
definition to others, and attempt to delineate the scope of situations
in which objective probabilities can be used.

1 Definitions of Probability

How should we assign probabilities to events? What is the meaning of a

statement of the form, “Event A will occur with probability p"? Or, to be

more cautious, under which conditions can we assign probabilities to events,

and under which conditions do possible meanings of the term apply?
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To address these questions we consider a few examples. For concreteness,

we embed these examples in decision problems, and one may further suppose

that the decision makers in question are interested in assigning probabilities

to events in order to subsequently maximize expected utility. Yet, our focus

is on the concept of “probability" as such. In discussing these problems,

observe also that our approach is epistemological rather than ontological.

We do not purport to discuss the “true" nature of probability, but only the

notion of probability insomuch as it can be measured and quantified. We are

interested in the type of circumstances in which a statement “Event A will

occur with probability p" can be made, and the meaning that should then

be attached to such a statement.

Example 1 A coin is about to be tossed. Sarah is offered a bet on the
outcome of the toss. She wonders what is the probability of the event “The

coin lands on Head".

Example 2 John normally parks his car on the street. He is offered an
insurance policy that will cover theft. To decide whether he should buy the

policy, he wonders what is the probability that his car will be stolen during

the coming year.

Example 3 Mary has to decide whether to undergo a medical operation
that is supposed to improve her quality of life, but that may also involve

serious risks. Trying to make a rational decision, Mary asks her physician

what is the probability of various events, such as death.

Example 4 George considers an investment opportunity, and he figures
out that the investment will not be very successful if there is another war

in the Middle East over the next year. He then attempts to assess the

probability of such a war in this time frame.

The term “probability" has various meanings and definitions. Among

these, at least three seem to be widely accepted:

The “Classical" approach suggests that all possible outcomes have the
same probability. This approach has been used in early writings on games of
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chance, and it has been explicitly formulated by Laplace as a principle, later

dubbed the “Principle of Insufficient Reason" or the “Principle of Indiffer-

ence".

The “Frequentist" approach offers the empirical frequency of an event
in past observations as a definition of its probability. Bernoulli’s (1713)

law of large numbers guarantees that independent and identical repetitions

of an experiment will result, with probability 1, in a relative frequency of

occurrence of an event that converges to the event’s probability. In fact, this

limit relative frequency is often used as an intuitive definition of probability.

The relative frequency in a finite sample can thus be a good estimate, or

even a definition of the probability of the event.

The “Subjective" approach views probability as a numerical measure
of degree of belief that is constrained to satisfy certain conditions (or “ax-

ioms"). Subjective probability has been discussed from the very first days

of probability theory, and it is used already by Pascal in his famous “wa-

ger". Ramsey (1931), de Finetti (1937), and Savage (1954) have promoted

it, and suggested axioms on observed behavior, that would necessitate the

existence and uniqueness of a subjective probability measures. Specifically,

Savage (1954) provided a set of axioms on choices between alternative courses

of actions, which imply that the decision maker behaves as if she wished to

maximize the expectation of a certain function with respect to a certain

probability measure. Interpreting the function as “utility" and the measure

as “subjective probability", his theorem provides a behavioral definition of

subjective probability, coupled with the principle of expected utility maxi-

mization.

We now turn to examine how each of these three approaches deals with

the four examples described above.
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1.1 The Classical Approach

The classical approach applies in Example 1. When Sarah is considering the

bet on the outcome of the coin toss, she might, in the absence of any other

information, assign a probability of 50% to each possible outcome. However,

the same approach does not seem to be tenable in the other examples. If

John were to say, “either my car is stolen, or it isn’t, hence it has probability

of 50% of being stolen", he would hardly be rational. Nor can Mary or

George assign 50% to surviving the operation, or to a war in the Middle

East, respectively. Clearly, there is too much information in these examples

to apply the principle of insufficient reason. In fact, even in the absence of

information, this principle has come under attack on various grounds. For

instance, it is very sensitive to the representation of the state space, especially

when the latter in infinite.

Despite these attacks, in Example 1 the principle of insufficient reason

is acceptable, whereas in Examples 2-4 it is completely inappropriate. One

may wonder what are precisely the features of Example 1 that distinguish

it from the others in this respect. That is, one may wish to delineate the

scope of applicability of the principle of insufficient reason. Here we merely

conclude that this approach for the assignment of probabilities is not very

useful in most real life decision problems.

1.2 The Frequentist Approach

The frequentist approach appears to be more promising. Like the classical

approach, it can deal with the coin problem in Example 1: if one has many

observations of tosses of the same coin in the past, conducted under similar

conditions, one may take the observed relative frequency as a definition of

the probability of the coin landing on Head. Indeed, it is quite possible that

this approach will coincide with the principle of insufficient reason, as will be

the case if the coin is fair. But the relative frequency approach would apply

equally well also if the coin is not fair. This approach does not assume any
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symmetries in the problem, and it is therefore robust to alternative represen-

tations of the state space. The frequentist approach deals with Example 2 in

basically the same way as with Example 1: if there are many observations of

cars parked overnight, and if these observations were taken under practically

the same conditions, that is, in the same neighborhood, for the same type of

car, and so forth, then it makes sense to take the average rate of theft as the

probability of a particular car being stolen.

How would the frequentist approach be applied to Example 3? In prin-

ciple, it should follow the same pattern: Mary should ask her physician how

often the operation has succeeded in the past, and use the ratio of successes

to trials as the “probability" of success. But Mary may find her physician

uneasy about a straightforward quote of relative frequencies. After all, the

physician might say, the data were collected over a variety of individuals,

who differ from Mary in many relevant ways, including age, gender, weight,

blood pressure, and so forth. They were operated on in different hospitals

and by different surgeons. In fact, the physician might say, since no two cases

are identical, you can choose which dataset to look at, and thereby affect the

“probability" you obtain. Thus, the objectivity of the empirical frequency

approach is compromised by the subjectivity of the choice of the sample.

The applicability of the frequentist approach to Example 4 is even more

dubious. This approach would call for the listing of past cases in which war

has or has not erupted, and taking the number of wars divided by the overall

number of cases to be the probability of war. One difficulty that becomes

obvious in this example is the precise delineation of a “case" in time. Should

we take each year to be a separate case? If so, how would we deal with a war

that lasted more than one year, or with a year in which more than one war

has occurred? Should we perhaps lump periods together in larger chunks?

Or should we define cases as starting and ending by historically meaningful

events? Clearly, splitting andmerging cases will affect the relative frequencies

of wars, and thereby our probability assessments.
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A second difficulty that George would encounter in Example 4 is that

encountered by Mary in Example 3: the choice of the dataset, or the relevant

“sample" is not obvious. What should count as a case, relevant for the

relative frequency of the occurrence of wars? Should we go back to wars in

the Middle East in biblical times? These might be relevant when certain

geographical or strategic considerations are concerned, but their relevance

seems limited, as well as our degree of confidence in their veracity. Should

we perhaps restrict attention to modern times? But if so — how can one

define “modern times" objectively? Does it make more sense to restrict one’s

attention to post-WWII period, or to rely on a larger dataset that predates

WWII? Similarly, one may further wonder which other features of past cases

should matter. Should one consider only cases in which the involved parties

had similar military might, similar regime, or similar economic conditions?

Clearly, as in Mary’s medical example, George also faces a situation that

is unique. History repeats itself, but never in precisely the same form, and

the current case has enough features that distinguish it from all past cases.

If George were to take all these considerations into account, he will end up

with an empty dataset. If he ignores them completely, his dataset is large but

very uneven in terms of relevance. Thus, the choice of the dataset becomes

a subjective one, which ends up affecting the assessed probability.

There is yet another difficulty that is unique to George’s problem: in Ex-

ample 4, past cases cannot be assumed to be causally independent.1 Thus,

the relative frequency approach may be ignoring important mechanisms that

are at work. Observe that, in Example 3, Mary could ignore possible causal

dependencies. She could argue that the success of the operation on other

patients does not directly affect its success in her case. This is clearly an

1We use the term “causation" in an intuitive sense. Of the various definitions of this
term, some resort to probability as a primitive (cf. Pearl, 2000). Such definitions cannot
be used in our context, as we are attempting to define the term “probability". However, we
do not use causation as part of our suggested definition. It will only be used in the informal
meta-discussion, attempting to characterize the scope of applicability of our definition.
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assumption about the world. Moreover, it may not be true, if, for instance,

Mary is going to be operated on by a surgeon who failed in his previous oper-

ation and may have even been sued for malpractice. Still, the independence

assumption seems like a reasonable one for Mary, and it allows her to view rel-

ative frequencies as proxies for “probability". This is not the case in George’s

problem. Recent wars are intricately related in various causal relationships

to the possible next war. There are political and military lessons that are

being learned, there are goals that have and have not been obtained, and

so forth. Hence, simply considering relative frequencies may be completely

misleading.

1.3 The Subjective Approach

The subjective approach appears to be immune to all the difficulties men-

tioned above. According to this approach, probabilities are subjective, or

“personal", and therefore they need not derive from past data or from per-

ceived symmetries. Rather, they reflect intuition, and model it in a precise

way. One may have a degree of belief in the eruption of war just as one has a

degree of belief in a coin landing on Head, and the formal probability model

can help sharpen this intuition and put it to use. Moreover, making decisions

in accordance with certain sets of axioms implies that one makes decisions

as if one were to use a probability measure.2

The subjective approach is conceptually very neat. Rather than coping

with the essence of objectivity, with the meaning of factual knowledge, and

with the possibility of processing data in an objective way, this approach steps

2Probability may be used in various decision rules, the most famous of which is ex-
pected utility maximization. But a decision maker may be following a well-defined sub-
jective probability measure also when using other rules. Machina and Schmeidler (1992)
defined and axiomatized “probabilistic sophistication", which may be defined as “having
a subjective probability measure and making decisions based solely on the distributions
that this probability induces". Rostek (2006) suggested axioms that imply that the de-
cision maker has a subjective probability measure, and that she makes decisions so as to
maximize the median utility with respect to that probability.
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back, gives up any claim to objectivity, and rearranges its defense around

universality: probability is only subjective, but, as such, it may apply to any

source of uncertainty, irrespective of the amount of relevant data gathered.

However, this approach has been attacked on several grounds. Ellsberg’s

experiments (Ellsberg, 1961) have shown that people often behave as if they

do not have a subjective probability measure that may summarize their be-

liefs. Several authors have also attacked the subjective approach on norma-

tive grounds. (See Shafer, 1986, and Gilboa, Postlewaite, and Schmeidler,

2006.) In particular, it has been argued that in the absence of information,

it may not be rational to choose a single probability measure, a choice that is

bound to be arbitrary. Moreover, the behavioral derivations of probabilistic

beliefs have also been criticized on the normative appeal of their underlying

axioms.

In this paper we do not take issue with the subjective approach. Rather,

our focus is on the possibility of defining objective probabilities. We therefore

consider Examples 3 or 4, and ask whether some intuitive notion of objective

probabilities can be defined in these examples.

1.4 Extending Frequentism

Let us consider Example 3 again. The main difficulty that Mary was facing

in applying the frequentist approach was that past cases differed in many

ways, and that each case was basically unique. It is useful to observe that, in

principle, the same objection may apply to the application of the frequentist

approach in Examples 1 and 2 as well. In Example 2, for instance, one might

argue that no two cars are identical, just as no two patients are in Example

3. Even in Example 1 we may have to admit that no two tosses of a coin are

precisely identical. Various factors distinguish one toss from another, such

as meteorites that might affect Earth’s gravitational field, the mood of the

person tossing the coin, and so forth.

More generally, every case is unique, if only because it can be defined
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by its exact time and location. Thus, the differences between Examples 1,

2, and 3, as far as the frequentist approach is concerned, are differences of

degree, not of kind. All cases are inherently unique, but in examples such as 1

and 2 one may make the simplifying assumption that a certain “experiment"

was repeated many times. In other words, it is a judgment of similarity that

allows the frequentist approach to be used.

This observation paves the way to a natural generalization of the frequen-

tist approach: if cases are not identical, or if there aren’t sufficiently many

cases that may be assumed identical, one may bring forth the similarity be-

tween cases and use it in the definition of probability. This would be in line

with Hume’s (1748) focus on similarity as key to prediction. Specifically, the

probability of an event can be defined by its weighted relative frequency in

past cases, where each case is weighed by its similarity to the present case.

Thus, a success in an operation of another patient in the past makes a suc-

cess in Mary’s case more likely, but the degree to which the past case matters

depends on the similarity between Mary and the patient in the past obser-

vation. We devote Section 2 to a more formal description of this approach,

as well as to further discussion of the similarity-weighted frequency formula

and its axiomatic derivations.

1.5 Is It Objective?

The similarity-weighted frequency approach may thus overcome some of the

difficulties encountered by the frequentist approach. But will we not give up

objectivity in this process? A given dataset will result in a large range of

possible “probabilities", depending on the similarity function that we choose

to employ. If the similarity function is a matter of subjective judgment, so

is the resulting probability. It would therefore appear that the similarity-

weighted frequency approach has, at best, translated the question, “Which

probability should we use?" to “Which similarity should we use?"

However, we maintain that this translation is a step forward. In fact,
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we argue that the choice of the similarity function need not be arbitrary or

subjective: we propose to estimate the similarity function from the data. The

basic idea is to try explaining past data by a similarity-weighted frequency

formula, and, in this context, to ask which similarity function best explains

the data we have observed. Section 3 describes this estimation procedure in

more detail.

We thus suggest similarity-weighted frequencies, employing the empirical

similarity function derived from the data, as a definition of objective prob-

abilities. We hold that this is a reasonable definition in certain domains of

application, such as described in Example 3. In Section 4, we compare our

definition to alternative definitions that are based on statistical techniques.

We argue that our approach is more appropriate, mostly because it is a nat-

ural extension of the frequentist approach, and because it is axiomatically

based.

Yet, we do not view our definition as universally applicable. In fact,

the axiomatizations of our formula are also helpful in identifying classes of

situations in which it might be inappropriate. Example 4 is such a situation.

We are not aware of any method for the assignment of objective probabilities

that would be intuitive in situations such as Example 4. Our definition

certainly isn’t. We devote Section 5 to limitations of our approach. Finally,

Section 6 discusses possible directions for extending our definition to a wider

class of cases.

2 Similarity-Weighted Relative Frequencies

2.1 The formula

For concreteness, we stick to Example 3 in the exposition. Let the variable

of interest be Y ∈ {0, 1}, indicating success of a medical procedure. The
characteristics of patients are X = (X1, ...,Xm). These variables are real-

valued, but some (or all) of them may be discrete. We are given a database
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consisting of past observations of the variables (X,Y ) = (X1, ..., Xm, Y ),

denoted (Xi, Yi)i≤n. A new case is introduced, with characteristics Xn+1 =

(X1
n+1, ...,X

m
n+1), and we are asked to assess the probability that Yn+1 = 1.

Assume that we are also equipped with a “similarity” function s such that,

for two vectors of characteristics, Xi = (X
1
i , ...,X

m
i ) and Xj = (X

1
j , ..., X

m
j ),

s(Xi,Xj) > 0 measures the similarity between a patient with characteristics

Xi and another patient with characteristics Xj. The similarity function s

will later be estimated from the data. We propose to define the probability

that Yn+1 = 1, given the function s, by3

Ŷ s
n+1 =

P
i≤n s(Xi, Xn+1)YiP
i≤n s(Xi, Xn+1)

. (1)

That is, the probability that Yn+1 be 1, i.e., that the procedure will succeed

in the case of patient Xn+1, is taken to be the s-weight of all past successes,

divided by the total s-weight of all past cases, successes and failures alike.

2.2 Intuition

Formula (1) is obviously a generalization of the notion of empirical frequency.

Indeed, should the function s be constant, so that all observations are deemed

equally relevant, (1) boils down to the relative frequency of Yi = 1 in the

database. If, however, one defines s(Xi,Xj) to be the indicator function of

Xi = Xj (allowing for the value 0 in case the vectors differ from each other,

and setting it to be 1 in case they are equal), then formula (1) becomes the

conditional relative frequency of Yi = 1, that is, its relative frequency in

the sub-database defined by Xn+1. It follows that (1) suggests a continuous

spectrum between the two extremes: as opposed to conditional relative fre-

quencies, it allows us to use the entire database. This is particularly useful

3For simplicity, we assume that s is strictly positive, so that the denominator of (1)
never vanishes. But in certain situations, such as conditional frequencies, one may wish to
allow zero similarity values. Leshno (2007), who extends the axiomatization to this case,
and allows a sequence of similarity functions that are used lexicographically as in (1).
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in the medical example, where the database defined by Xi = Xn+1 may be

very small or even empty. At the same time, it does not ignore the variables

X, as does simple relative frequency over the entire database. Thus, formula

(1) uses the entire database, but it still allows a differentiation among the

cases depending on their relevance.

2.3 Axiomatic Derivations

Formula (1) has been axiomatized in Gilboa, Lieberman, and Schmeidler

(GLS, 2006) for the case discussed here, namely, the estimation of the prob-

ability of a single event, or, equivalently, of the distribution of a random

variable with two possible values. Billot, Gilboa, Samet, and Schmeidler

(2005) provide an axiomatization of the same formula in the case that the

random variable under discussion may assume at least three distinct values.4

Gilboa, Lieberman, and Schmeidler (2007) extend this axiomatization to the

assessment of a density function of a continuous variable. While these ax-

iomatic derivations differ in the framework, as well as in the assumptions

regarding which data are observable, they all use a “combination" axiom,

which states, roughly, that if a certain conclusion should be arrived at given

two disjoint databases, then this conclusion should also be the result of the

union of these databases.5

The basic logic of the axiom is as follows. Assume that Mary asks her

physician whether the operation is more likely to succeed than not. Suppose

that the physician says that “chances are" it will, meaning that success is

more likely than failure. Mary decides to seek a second opinion. She consults

another doctor, who has been working in a different hospital for many years.

Let us assume that both doctors have the same inference algorithm, and that

they only differ in the databases they have been exposed to. Suppose that

4The axiomatization in Billot et al. (2005) relies on the fact that space of probability
vectors has at least two dimensions, and it therefore cannot be adapted to the case or a
binary variable (i.e., the one-dimensional case).

5Such an axiom was also used in Gilboa and Schmeidler (2001, 2003).
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the second doctor also thinks that success is more likely than failure. Should

Mary ask the two to get together and exchange databases?

If Mary does not feel that the two doctors should exchange data, she

implicitly believes that a conclusion, which has been warranted given each

of the two databases, will also be warranted given their union. Casual ob-

servation suggests that people are generally reassured when they find that

the advice of different experts converge. Hence we find the basic logic of

combination axiom rather natural.

Gilboa and Schmeidler (2003) show that several well-known statistical

techniques satisfy the combination axiom. These include likelihood rank-

ing by empirical frequencies, kernel estimation of a density function, kernel

classification, and maximum likelihood ranking of distributions. The fact

that all these techniques obey the same principle, namely the combination

axiom, may be taken as an indirect piece of evidence that the axiom is a

good starting point for a theory of belief formation. Having said that, there

are several important classes of applications where the combination axiom is

unreasonable. We discuss these in Section 5.

3 Empirical Similarity

3.1 Best fit

As mentioned above, the probability obtained from similarity-weighted fre-

quencies depends on the similarity function one employs. Which function

should we use? In an attempt to avoid arbitrary choices, and in the hope of

retaining objectivity, we define the empirical similarity to be the similarity

function that best explains the database, assuming that we use it as in (1).

To simplify the estimation problem, we choose a particular functional form,

and thus render the problem parametric. Specifically, we specify a vector of

positive weights w = (w1, ..., wm), consider the weighted Euclidean distance
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corresponding to it,

dw(x̄, x̄
0) =

sX
j≤m

wj(xj − x0j)
2

and use as a similarity function the negative exponential of the weighted

distance:6

sw = e−dw .

Given the database, for each vector w, one may calculate, for each i ≤ n, the

value

Ŷ sw
i =

P
j 6=i sw(Xi,Xn+1)YjP
j 6=i sw(Xi,Xn+1))

. (2)

The goodness of fit can be measured by

SSE(w) =
X
i≤n
(Ŷ sw

i − Yi)
2.

It then makes sense to ask, which vector w minimizes the sum of squared

errors, SSE(w). The minimizer of this function is then used in (1) to define

the probability that Yn+1 = 1. When we use (1) in conjunction with the

SSE-minimizing vector w, we obtain probability estimates that are “objec-

tive” in the same sense that classical statistics generally is: one may resort

to statistical considerations for the choice of the general procedure, but no

specific knowledge relating to the application is needed to implement the

procedure. In Example 3, Mary needs to consult a statistician for the choice

of the functional form of the similarity function, as well as for the measure of

goodness of fit. But she does not need to consult a physician. Indeed, the re-

sulting probability assessments are independent of the physician’s subjective

judgment or expertise. These assessments follow directly from the database,

and they may serve an inexperienced doctor just as an experienced one.
6The exponential function was characterized in Billot, Gilboa, and Schmeidler (2005).

They provide simple conditions on assessments, presumably generated by similarity-
weighted averages, and show that these conditions are equivalent to the existence of a
norm on Rm such that the similarity function between two vectors is the negative ex-
ponent of the norm of the difference between these vectors. The choice of the weighted
Euclidean distances out of all possible norms is made for simplicity.
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3.2 Comparison with the Notion of IID Random Vari-
ables

The textbook examples of classical statistics have to do with i.i.d. random

variables, that is, random variables that are identically and independently

distributed. These properties guarantee the laws of large numbers, the central

limit theorem, and all the results that derive from these. Importantly, the

laws of large numbers offer a natural definition of probability by relative

frequency. Both the identical distribution and the statistical independence

assumptions may be relaxed to a certain extent without undermining the laws

of large numbers. But these assumptions cannot be dropped completely. If

there is neither statistical independence, nor a certain weakening thereof,

the size of the sample does not guarantee that the relative frequency would

converge to anything at all, let alone to a number that can be interpreted as

probability. Worse still, if the distributions of the random variable are not

identical, or close to identical, it is not at all clear what is the “probability"

that the relative frequency should converge to.

The mapping between the assumptions of i.i.d. observations in statis-

tics and our model is not straightforward. Both notions, “identical" and

“independent", are defined in probabilistic terms, whereas in our model no

probability is assumed. Indeed, the model attempts to invest this concept

with meaning, and therefore cannot assume it as primitive. Yet, our model

suggests intuitive counterparts to these assumptions. Identicality of distribu-

tion is somewhat akin to identicality of the circumstances, i.e., of all observed

variables x. One might argue that we cannot directly observe the distrib-

ution of the variable of interest, y, and if all observed variables x assume

the same values, this is the closest that we can get to “identical distribu-

tion" in an empirical study. Stochastic independence of random variables is

a rather strong condition, which implies the absence of causal relationships

between the variables in question. This causal independence is implicit in

our combination axiom.
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Viewed from this perspective, our approach suggests that the indepen-

dence assumption is, in a very vague sense, more fundamental than the iden-

tical distribution assumption. Our model drops the assumption that all ob-

servations are taken under identical conditions. In doing so, it foregoes the

notion of a probability number that exists in some abstract or platonic sense,

independent of our sample, and to which relative frequencies might converge.

In our model, the probability of the event yt = 1 occurring at observation t

is a number that differs with t, depending of the xt values. Our approach is

therefore not an attempt to measure a quantity whose existence is external

to the sample. Rather, our approach defines certain rules, by which the term

“probability" can be used in an objective and well-defined way. And we ar-

gue that for this notion of “objective probability" one need not assume any

notion of “identical repetition".

By contrast, our model heavily relies on the combination axiom, which

may be viewed as retaining some notion of independence. Indeed, in the

presence of causal dependencies neither our axioms nor our formula are very

plausible. Thus, our approach suggests that in order to discuss objective

probabilities, one need not resort to any notion of identical repetition, but

one does need some notion of independence.

3.3 Statistical Theory

Finding the parameters that minimize the sum of squared errors is an ac-

cepted way of selecting the “best" model. But in order to employ statisti-

cal inference techniques such as hypotheses tests and confidence intervals,

one needs to couch the similarity-weighted frequency formula in a statistical

model. In GLS (2006) we analyze the following statistical model.

For t = 2, ..., n, we assume that

Y sw
t =

P
i<t sw(Xi, Xt)YiP
i<t sw(Xi,Xt)

+ εt (3)

where εt ∼ N(0, σ2), independently of the other variables.
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In such a model it makes sense to ask whether the point estimates of

the unknown parameters are significantly different from a pre-specified value,

and in particular, from zero. In GLS (2006) we focus on maximum likelihood

estimation of the parameters (wj)j, and we develop tests for such hypotheses.

Observe, however, that the statistical model (3) differs from (2) in that, in

the former, each observation is assumed to depend only on observations that

precede it in the database. This assumes a certain order of the datapoints.

When no such order is naturally given, such an order may be chosen at

random. In this case, the statistical analysis should be refined to reflect this

additional source of randomness.

4 Related Definitions

The problem of predicting a variable Y based on observable variablesX1, ..., Xm

is extensively studied in statistics, machine learning, and related fields. Among

the numerous methods that have been suggested and used to solve such prob-

lems one maymention linear and non-linear regression, neural nets, linear and

non-linear classifiers, k-nearest neighbor approaches (Fix and Hodges, 1951,

1952), kernel-based estimation (Akaike, 1954, Silverman, 1986, Scott, 1992),

and others. Indeed, kernel-based methods are very similar to similarity-

weighted frequencies.

When the variable of interest, Y , is binary (0 or 1), the approach that

is probably the most popular in medical research is logistic regression. This

method, introduced by McFadden (1974), uses the measurable variables in a

linear formula, which is transformed in a monotonic way to a number between

0 and 1. This number can be computed for each given set of coefficients of

the variables, and it is taken to be the predicted probability that the event

in question will materialize in the next observation. Logistic regression finds

the coefficients that result in the “best fit" that can be obtained between

the predicted probabilities and the actual observations. This process may be
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viewed as a possible definition of the term “probability" in Example 3.

The probability numbers generated by logistic regression depend on the

predicting variables in these observations. At the same time, these prob-

abilities can be thought of as “objective”, because they do not resort to

a physician’s subjective assessments. Rather, they rely solely on observed

data. Admittedly, statistics’ claim to objectivity is always qualified. Differ-

ent choices that a statistician makes in the estimation process will result in

different outcomes. Yet, logistic regression, as well as the empirical similarity

method we propose are objective in the sense that they do not require the

statistician to consult with a medical expert in order to generate predictions

or estimate probabilities.

It is generally expected that each method for the assessment of probabili-

ties will be more successful in certain applications and less in others. Finding

how well each method performs in a particular type of application is an em-

pirical question that is beyond the scope of this paper. At the theoretical

level, we hold that the method offered here has several advantages over the

alternatives mentioned above. First, the similarity-weighted frequencies are

an intuitive extension of simple frequencies, and can thus be offered as a

definition of the notion “probability”. By contrast, some of the alternative

methods might be useful predicting tools, but they are not intuitively inter-

pretable as “probability”. Second, our basic formula (1) appears to be the

only one which is axiomatically derived. Third, not all alternative method

have the statistical theory required for statistical inference (in particular,

hypotheses testing). Finally, in contrast to, say, logistic regression, our ap-

proach does not assume any functional relationship between the observed

variables and the predicted variable. In this sense, the empirical similarity

approach is more “epistemically humble", in that it allows the data to deter-

mine not only the actual probability assessment, but also the way that this

assessment is computed (via determination of the similarity function).
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5 Limitations

Gilboa and Schmeidler (2003) contain an extensive discussion of the combina-

tion axiom, including an attempt to characterize several classes of counter-

examples, that is, of situations in which the axiom appears unreasonable.

We will not replicate this discussion here, but we will mention a few classes

of problems in which one should not expect the axiom to hold, and, conse-

quently, one should not use the methods that are restricted to satisfy it.

The first class of counter-examples involves theorizing, that is, inductive

inferences from cases to underlying theories, and then deductive inference

back from these theories to future cases. For example, when one uses past

observations to learn the parameter of a coin, p, and then uses probability

theory to make predictions regarding sequences of tosses of that coin using

the best estimate of p, the combination axiom is unlikely to hold.

Similarly, if one believes that the observations are generated by a linear

function, uses the data to estimate a linear regression formula, and then

uses the estimated formula to make predictions, one is unlikely to satisfy the

combination axiom. Indeed, it is evident from the basic similarity-weighted

average formula (1) that it does not make any attempt to identify trends.

To consider an extreme example, assume that m = 1 and that the database

contains many points with x = 1, for which the relative frequency of Y = 1

was .1. There are also many points with x = 2 and a relative frequency of

.2 for Y = 1, and so on for x = 3 and x = 4. Next assume that we are

asked to make a prediction for a new case in which xt = 5. It seems patently

plausible to suggest that the probability that Yt = 1 be 0.5. It makes sense

to identify a trend, by which the probability of Y = 1 goes up with x.

In fact, logistic regression seeks precisely this kind of relationships. But the

similarity-weighted average method will fail to produce a value that is outside

the observed range of [0.1, 0.4]. It is important to recall that the similarity-

weighted average does not seek trends, and, more generally, does not attempt

to theorize about the data. It engages only in case-to-case induction, but not
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in case-to-rule induction coupled with rule-to-case deduction.

The second class of counter-examples to the combination axiom involves

changes in the similarity function. In particular, if the probabilistic reasoner

perform so-called second-order induction (Gilboa and Schmeidler, 2001), that

is, if she learns which similarity function should be used to learn from past

cases about the future, then the combination axiom is again an unlikely

principle. Learning of the similarity function may involve qualitative insights,

if, say, a physician, after examining a large database, says, “and it suddenly

dawned on me that the common feature to all these cases was...". But

such learning may also be quantitative and follow from purely statistical

reasons: with the accumulation of more data, the need to use more remote

observations is reduced, and one may obtain better assessments by restricting

attention to close cases. More generally, learning of the similarity function,

that is, any process that adapts the similarity function as a function of the

data should be expected to violate the combination axiom.

Obviously, our approach faces a difficulty here. On the one hand, we jus-

tify the similarity-weighted average based on the combination axiom, which

is violated when the similarity function is learnt itself. On the other hand,

the notion of empirical similarity is precisely one of learning the similar-

ity function. Thus, a probabilistic reasoner who would follow our advice to

compute the empirical similarity will thereby violate our recommendation to

satisfy the combination axiom, and will consequently not be sure that the

similarity-weighted average method makes sense to begin with.

One possible resolution is to assume that the similarity function is up-

dated only at certain periods, and between each two such consecutive periods

the combination axiom holds. We conjecture that the axiomatizations men-

tioned above would have approximate counterparts with bounded databases,

which would allow the use of formula (1) between updating periods. Admit-

tedly, this resolution is rather awkward, and more elegant axiomatizations of

similarity-weighted frequencies with a similarity function that is learned are
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called for.

6 Future Directions

The discussion above suggests several directions in which one may extend

the empirical similarity approach to the definition of probabilities. First, one

should have more satisfactory theories, allowing the similarity function to be

learnt and refined in the process, in a way that parallels the choice of a ker-

nel function in non-parametric estimation. (See Silverman, 1986.) Second,

analogical, case-based reasoning which is incorporated in similarity-weighted

frequencies should be combined with deductive, rule-based reasoning. For

instance, one may extend the similarity-weighted formula so that each ob-

servation (xi, yi) will give support not only to the value observed yi, but also

to various functions f(x) that the observation approximately satisfies, i.e.,

to functions f such that yi ≈ f (xi). Thus, if all points observed lie near the

graph of a certain function f , this function will gain support from each of

the observations, and will thus offer itself as a natural generalization of the

cases to a rule. The class of functions f one allows into this analysis has to

be limited to make the analysis meaningful (and to avoid “overfitting" by

finding a function that matches all the data precisely, but that does poorly

in prediction). It is a challenge to find natural limitations on the class of

functions that will retain a claim to objectivity.

Another extension might combine Bayesian reasoning with similarity-

weighted averages. One may start with a Bayesian network (see Pearl, 1986),

reflecting possible dependencies among variables, and assess probabilities on

each edge in the network by the empirical similarity technique. These prob-

ability numbers will then be used by the Bayesian network to generate prob-

abilistic predictions that make full use of the power of Bayesian reasoning.

In this case, again, part of the challenge is to find ways to develop Bayesian

networks that will be “objective".
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However, it is not at all obvious that these and other extensions, or,

in fact, any other approach, can come up with a reasonable definition of

objective probability in Example 4 above. The main difficulty appears to be

the causal dependence between cases. When cases are causally independent,

an observation of one case may teach us something about the likelihood of

the occurrence of an event in another case. As long as the latter is a fixed

target, one may have a hope that, with sufficiently many observations, one

may learn more about this likelihood, to a degree that it can be quantified

in a way that most people would agree on. But when causal dependence

is present, an observation of a particular case not only reveals information

about another case, it also changes its likelihood. Thus, we are after a moving

target, and find it difficult to separate the process of observation from the

process observed.

Idiosyncrasy of cases and causal relationships do not allow us to define

objective probabilities by empirical frequencies. These two phenomena also

make it difficult to assign observable meaning to counterfactual propositions.

It is relatively easy to understand what it meant by the statement “If I were

to drop this glass, it would break". There are many cases of practically

identical glasses being held and being dropped, and since these cases are

assumed to be causally independent, this counterfactual statement has a

verifiable meaning. Correspondingly, one can design an experiment that will

be viewed as a test of this statement. By contrast, it is much harder to judge

the veracity of the counterfactual, “Had Hitler crossed the channel, he would

have won the war". First, historical cases of war are never identical. Second,

they are seldom causally independent. Our approach suggests that a theory

of counterfactuals might more easily deal with the first problem than with

the second.

At present, we are not convinced that the notion of objective probability

can be meaningfully defined in situations involving intricate causal relation-

ships between observations. However, it seems obvious that when causal

22



independence holds, the definitions discussed here can be greatly improved

upon.
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