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Abstract

I enrich the typology of players in the standard model of games

with incomplete information, by allowing them to have incomplete

“archival information”- namely, piecemeal knowledge of steady-state

correlations among relevant variables. A player’s type is defined by

a conventional signal (a.k.a “news-information”) as well as the novel

“archive-information”, formalized as a collection of subsets of vari-

ables. The player can only learn the marginal distributions over these

subsets of variables. Building on prior literature on correlation ne-

glect and coarse reasoning, I assume that the player extrapolates a

well-specified probabilistic belief from his limited archival information

according to the maximum-entropy criterion. This formalism expands

our ability to capture strategic situations with “boundedly rational

expectations.”I demonstrate the expressive power and use of this for-

malism with some examples.
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1 Introduction

When people engage in a static strategic interaction, they make use of various

kinds of information. One kind concerns the current realization of exogenous

variables. Another kind consists of background data about joint realizations

of exogenous and endogenous variables in past instances of the game. I

refer to these two kinds as news-information (or N -information) and archive-

information (or R-information), respectively. To use a journalistic metaphor,

N -information is akin to a news flash about a corporate scandal, whereas R-

information is what a reporter gets when he starts digging the newspaper’s

archives for evidence about the behavior of various actors in past scandals.

While N -information is knowledge of characteristics of the current strategic

situation, R-information enables the player to make sense of this knowledge

and draw conclusions about the possible consequences of his actions.

Standard game theory treats these two types of information very differ-

ently. Harsanyi’s model of static games with incomplete information of-

fers a rich general description of players’ incomplete information regard-

ing the current realization of exogenous variables, including high-order in-

formation. In other words, Harsanyi’s type-space formalism is exclusively

about news-information; it leaves the task of describing archive-information

to the solution concept. Introspective, “one-shot”solution concepts like ra-

tionalizability or level-k reasoning ignore archive-information altogether. At

the other extreme, Nash equilibrium presumes that players have complete

archive-information.

The last two decades saw various proposals for solution concepts that

retain the steady-state approach of Nash equilibrium, while relaxing its as-

sumption of complete archive-information and replacing it with some notion

of limited learning feedback that players receive regarding the steady-state

distribution, coupled with some model of how players form beliefs given their

partial feedback. I provide a detailed literature review in Section 5. At this

stage, it suffi ces to say that virtually all previous proposals assume that the
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feedback limitation that characterizes each player is fixed. And neither pro-

vides a model of players’ imperfect information (of either kind) regarding

their opponents’archive-information.

However, it is easy to think of real-life situations in which both types of in-

formation fluctuate, possible in tandem. For instance, a sophisticated player

may be characterized by accurate news-information as well as rich archival

information, whereas a naive player will be deprived of both. It is also natural

to think of situations in which one player has incomplete news-information

about another player’s archive-information. To use a military-intelligence ex-

ample, suppose that army 1 receives news from a dubious source that army

2 has just gained access to archival records of army 1’s behavior in past

situations, some of which share the present situation’s exogenous character-

istics. Likewise, we can meaningfully talk about one player having incom-

plete archive-information about another player’s archive-information. For

instance, army 1 may receive access to a computer file that documents army

2’s archival access in other situations. And one can easily extend these

descriptions to high-order statements that involve both news-information

and archive-information, just as we do for news-information in the standard

Harsanyi model.

In this paper I present a new type space for static games, which combines

both kinds of incomplete information. A state of the world is described by the

realization of a collection of variables. There is an objective prior distribution

p over states. Following Aumann (1987), the description of a state also

includes the realization of endogenous variables (players’actions, the game’s

consequence). This means that the prior p is interpreted as a steady-state

distribution in the system described by the model. The formalism also makes

use of an explicit notational distinction between variables and the set of their

labels, denoted L.

A player’s type has two components. The first component - referred to

as the player’s N -information - is defined as the realization of a specific
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subcollection of the exogenous variables. This is the conventional notion of

a signal: the player is partially informed about the current realization of the

exogenous variables. The novelty lies in the second component of the player’s

type, namely hisR-information. This is defined as a collection of subsets of L.

It represents the player’s “archival access”or “database privilege”, and means

that the player gets to learn the marginal of the prior distribution p over

each of the subsets of variables defined by his R-information. Thus, rather

than learning the entire joint distribution p, the player only has piecemeal

knowledge of it, in the form of some marginals. I assume that the player’s

payoff function is always measurable with respect to the variables about

which he does get archival information.

The player forms a belief in two stages. First, he extrapolates a subjective

probabilistic belief over the variables about which he has data, thus form-

ing a potentially distorted perception of the objective prior / steady-state

distribution p. In the second stage, the player conditions this extrapolated

belief on his type (i.e. both his N -information and his R-information) via

Bayes’rule, to form a subjective belief over payoff-relevant outcomes as a

function of his action. Equilibrium is defined in a completely standard way:

each player always plays a best-reply to his subjective belief.

Of course, there are many extrapolation rules one could employ in the

procedure’s first stage. However, a recurring theme in the literature is that

players apply some notion of parsimony when thinking about correlations:

They do not believe in correlations for which they do not have direct evidence.

This tendency toward “correlation neglect”has been discussed extensively in

the literature, both theoretically (e.g., Levy and Razin (2015)) and experi-

mentally (e.g. Enke and Zimmermann (2017)). It has also been mentioned

as a culprit in professional analysts’ failure to predict major political and

economic events.1

I capture this motive by assuming that players use the maximum-entropy

1See Hellwig (2008) and https://fivethirtyeight.com/features/the-real-story-of-2016/.
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extrapolation criterion. That is, the player’s belief is the distribution (over

the variables about which he has archival data) that maximizes entropy sub-

ject to being consistent with the marginals he knows. This extrapolation

is “parsimonious” in the sense that it does not postulate correlations that

lack a basis in his data. As I later show, it subsumes existing notions in

the literature as special cases, and easy to calculate and visualize in many

applications of interest.

Thus, each component of the player’s type corresponds to a different stage

in his belief-formation process. The first stage makes use of the player’s R-

information via the extrapolation rule of maximum entropy, while the second

stage makes use of his N -information via the conditioning rule of Bayesian

updating. To revisit the journalistic metaphor, players first use “archival

research” to extrapolate an unconditional belief, and then condition it on

the “news flash”.

1.1 An Example: Prisoner’s Dilemma

The following is a basic illustration of the formalism. Two players, denoted

1 and 2, play the following version of the Prisoner’s Dilemma:

a1\a2 C D

C 3, 3 0, 4

D 4, 0 1, 1

There is no uncertainty regarding the game’s payoff structure; the only un-

certainty will be about players’archive-information.

Throughout this paper, I have in mind situations in which players lack an

understanding of the game’s order of moves or the opponent’s preferences and

mode of reasoning. If players knew that they were playing a simultanoues-

move game - let alone one in which the opponent has a dominant action -

they would use this knowledge to form beliefs. Instead, I assume that players’
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understanding of behavioral regularities in the game is based entirely on

their (possibly incomplete) learning feedback, which is given by their archive-

information. This is in the spirit of existing concepts like self-confirming,

Berk-Nash or analogy-based expectations equilibrium (see Section 5).

Let Ri and ai denote player i’s R-information and action. A state of

the world is described by the quadruple (R1, R2, a1, a2). The set of variable

labels is L = {δa1 , δa2 , δR1 , δR2}. With probability 1 − α, both players have
complete archive-information - that is, R1 = R2 = {L}. This means that
the players have a full grasp of any steady-state distribution over the four

variables. With probability α, players have incomplete archive-information,

where R1 and R2 are given as follows:

R1 = {{δR1 , δa1}, {δa1 , δa2}}
R2 = {{δR2 , δa2}, {δa1 , δa2}}

That is, player i learns the joint steady-state distribution over his archive-

information and action, as well as the joint steady-state distribution over the

action profile. Players do not receive any news-information (other than the

realization of their own archive-information). In particular, player i does not

receive any signal regarding Rj. Thus, player i’s type is defined entirely by

Ri. This assumption is in fact immaterial for the equilibrium analysis of this

particular example.

The interpretation is as follows. The distribution over (a1, a2) represents

a large, publicly available record of past game outcomes, each independently

drawn from a steady-state joint distribution p over all four variables. Because

the record is public, players always have access to it and they can learn the

steady-state distribution over the action profile. In contrast, the record of

past joint realizations of player i’s archive-information and his action need not

be public. Indeed, it is privately accessed by player i alone with probability

α. With probability 1 − α, the complete historical record of all variables
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becomes publicly available.

The exogenous component of the prior p is p(R1, R2) - i.e., the distribution

over players’types. The endogenous components are the players’strategies,

given by the conditional probability distributions p(a1 | R1) and p(a2 | R2).

Because the game has simultaneous/independent moves, p satisfies the con-

ditional independence properties a1 ⊥ (R2, a2) | R1 and a2 ⊥ (R1, a1) | R2.

When player i’s type is Ri, he forms his belief in two stages. First, he ex-

trapolates an unconditional subjective belief pRi over the variables he has

data on. Then, he conditions this belief on his type and action to evaluate

the action’s payoff consequences.

Let us derive players’ beliefs as a function of their types. Complete

archive-information means rational expectations. That is, when Ri = {L},
pRi = p. Because D is a strictly dominant action, it follows that when player

i’s type is Ri = {L}, he will necessarily play D in any equilibrium. In con-

trast, suppose that Ri = {{δRi , δai}, {δa1 , δa2}}. Then, the player learns the
marginal distributions p(Ri, ai) and p(a1, a2). The maximum-entropy exten-

sion of these marginals is

pRi(Ri, a1, a2) = p(Ri, ai)p(aj | ai)

Conditioning this belief on the player’s news information ti = Ri and his

action, we obtain

pRi(aj | Ri, ai) = p(aj | ai)

Thus, when player i’s type is Ri = {{δRi , δai}, {δa1 , δa2}}, he forms a
conditional subjective belief regarding aj as if he thinks that his own action

causes the opponent’s action. In other words, he acts as if he mistakes the

correlation between ai and aj (due to their respective dependence on players’

correlated types) for a causal effect of the former on the latter. This crucial

feature of the player’s belief is a direct consequence of the maximum-entropy

extension criterion - which in turn relies on the principle that players are re-
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luctant to postulate correlations beyond those for which they have evidence

for. Furthermore, players do not use any other criterion for constructing be-

liefs about their opponents’behavior - a plausible assumption when players

lack an understanding of the game’s structure. In this context, it makes sense

for a player who is not aware that he is playing a Prisoner’s Dilemma - as

opposed to, say, a Stackelberg-like game in which the opponent has a coordi-

nation motive - to form a belief that his action directly causes the opponent’s

action, because this is a parsimonious interpretation of the correlations he

learns.

Equilibrium in this environment is defined conventionally, in the spirit of

trermbling-hand perfection (Selten (1975)). A profile of completely mixed

strategies constitutes an ε-equilibrium if whenever p(ai | Ri) > ε, ai max-

imizes player i’s expected utility with respect to his conditional subjective

belief pRi(· | Ri, ai). An equilibrium is simply a limit of a sequence of ε-

equilibria, where ε → 0. We can now characterize the set of symmetric

equilibria in this example. When equilibria are not sensitive to the pertur-

bation’s form, I will omit this part and go straight to the equilibria, without

describing ε-equilibria first.

One equilibrium is for players to play D regardless of their type - this is

the conventional game-theoretic prediction. Because C is never played, this

equilibrium needs to be sustained by a perturbation. Suppose that players

choose D with probability 1 − ε, independently of their type, where ε is

arbitrarily small. Then, p(aj | ai) = 1− ε for all ai, and therefore ai = D is

strictly dominant, hence the players’strategies constitute an ε-equilibrium.

Taking the ε→ 0 limit gives us the equilibrium.

Another equilibrium is for each player i to play D if and only if Ri = {L}.
To see why, we only need to establish that when Ri = {{δRi , δai}, {δa1 , δa2}},
ai = C is a best-reply (because D is strictly dominant when Ri = {L}).
Under this candidate equilibrium, p(aj = C | ai = C) = p(aj = D | ai =

D) = 1. We saw that when Ri = {{δRi , δai}, {δa1 , δa2}}, player i’s belief
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can be described as if he interprets the perfect correlation between ai and aj
causally, and therefore believes that player j will play C if and only if i plays

C. Therefore, C is a subjective best-reply.

There is a third, “hybrid” equilibrium, in which each player i plays C

with probability λ ∈ (0, 1) when Ri = {{δRi , δai}, {δa1 , δa2}}. (As before,
he plays D with probability one when Ri = {L}.) Best-replying requires

the player to be indifferent between the two actions, given his conditional

subjective belief:

3 · p(aj = C | ai = C) + 0 · p(aj = D | ai = C)

= 4 · p(aj = C | ai = D) + 1 · p(aj = D | ai = D)

We can calculate

p(aj = C | ai = C) =
αλ2

αλ
= λ

p(aj = C | ai = D) =
αλ(1− λ)

1− αλ

and obtain the solution

λ =
1

3− 2α

Thus, the formalism enables us to capture the idea that some types of

players perceive any long-run correlation between players’actions in causal

terms. The common variation in players’archive-information creates the cor-

relation between their actions, and one realization of their archive-information

gives rise to the mistaken causal interpretation of this correlation. In prin-

ciple, correlation between players’actions could arise because of correlated

payoff shocks. What is novel about the present example is that the funda-

mental correlation is in players’non-payoff types. One of these types lacks

access to the archival data that would enable him to correctly account for

this correlation. This sort of “bootstrapping”effect will be a running theme

in this paper. Novel effects will arise because players’archive-information
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is random, and because some realizations of this random variable lead to

distorted perception of the correlation patterns that arise from this source of

randomness.

2 The Formalism

For expositional simplicity, I restrict attention to simultaneous-move inter-

actions that involve two players, 1 and 2. The extension to more than two

players is straightforward. Let X be a finite set of states of the world.

This state space is endowed with a product structure, such that every state

x ∈ X is described as a realization of a collection of components, x =

(θ, s1, s2, R1, R2, a1, a2, z), where:

• θ is a state of Nature.

• si is player i’s N -information (a conventional signal).

• Ri is player i’s R-information (to be endowed with explicit structure

below).

• ai is player i’s action.

• z is the game’s outcome (e.g. an allocation of some resource).

Each one of these components may consist of a collection of variables (e.g., θ

may have multiple dimensions, each described by a distinct variable). Some

components may be suppressed in a given application (e.g., θ, s1, s2, z do not

appear in the example of Section 1.1). I refer to the pair (si, Ri) as player

ı́’s type. Each player i = 1, 2 has a vNM utility function ui : X → R. Let
p ∈ ∆(X) be an objective prior distribution over the state space. To re-

flect the simultaneous-move assumption, p satisfies the following conditional

independence properties: ai ⊥ (θ, sj, Rj, aj) | (si, Ri). That is, player i’s
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action is independent of the other exogenous variables and player j’s action

conditional on his type. Unless indicated otherwise, p has full support.

Comment: The notion of a state

A state of the world resolves all uncertainty, including the endogenous vari-

ables a1, a2, z. Although unconventional, this approach has important prece-

dents in the literature, notably in Aumann (1987), and it is fundamental to

the present formalism. Accordingly, the prior p is interpreted as a steady-

state distribution over all variables. I will often regard it as a representation

of a long historical record of similar interactions; the individual game is a

one-shot interaction between players, and p records the collective experience

of many other agents who assumed the two players’ roles in past interac-

tions. An equally fundamental feature of the formalism is the definition of a

state in terms of a collection of variables. Indeed, in Section 4.3 we will see

that proliferation in the variables that define a state may have behavioral

implications.

Finally, I impose explicit structure on Ri in order to substantiate its

interpretation as archive-information. This will require a bit of notation.

Enumerate the variables that define a state, such that x = (x1, ..., xn), Xi is

the set of values that variable xi can take and i is the label of variable xi.

I will often use the alternative notation lxi for the label of xi, in order to

have a transparent link between a variable and its label. Let L = {1, ..., n}
denote the set of variable labels. For every S ⊂ L, denote xS = (xi)i∈S and

XS = ×i∈SXi. Let pS ∈ ∆(XS) denote the marginal of the prior p on XS.

Now, any realization of Ri is a particular collection of subsets of the set of

variable labels L. The meaning is that for any prior p, player i learns pS for

each S ∈ Ri. Thus, Ri represents player i’s limited access to archival data -

his “database privileges”, so to speak. When Ri = {{L}}, player i has com-
plete archive-information. In contrast, when Ri consists of a number of small

subsets of L, player i’s archive-information is incomplete. Let N(Ri) denote

the union of the members of Ri. I restrict Ri to satisfy the property that ui
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is measurable with respect to xN(Ri). That is, the player never lacks archival

data about a variable that is necessary to define his payoffs unambiguously. I

also typically assume that lai ∈ N(Ri) - i.e., player i always obtains archival

data regarding ai. The latter assumption is not necessary and only made to

simplify notation at certain points.

Belief formation

To make a decision, player i forms a probabilistic belief as a function of his

type. In the standard model of Bayesian games, a player’s type is defined

solely in terms of his news-information. Accordingly, the player forms his

belief in a single step: Bayesian updating of p conditional on his type. In

the present model, a player’s type consists of two kinds of information, and

so he forms his conditional probabilistic assessment in two stages that makes

use of different kinds of information:

Stage one involvesmaximum-entropy extrapolation from archive-information:
the player forms the unconditional belief pRi ∈ ∆(XN(Ri)) that solves

max
q∈∆(XN(Ri))

− ∑
z∈XN(Ri)

q(z) ln(q(z))


s.t. qS ≡ pS for every S ∈ Ri

That is, the player’s unconditional belief over the variables about which he

has archival data maximizes entropy subject to being consistent with the

marginals his archival data enables him to learn.2

Stage two involves conditioning on the player’s type, according to conven-
tional Bayesian updating. The player’s conditional belief over XN(Ri) - which

is what the player uses to evaluate actions - is thus pRi(xN(Ri) | si, Ri).

2The solution to the constrained maximization problem will always be unique.
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Thus, each component of the player’s type is associated with a particular

operation that he performs on the objective prior p. The first stage involves

extrapolation; the player’s archive-information tells us what he extrapolates

from. The second stage involves conditioning; the player’s news-information

tells us what he conditions on. This stage utilizes the “canonical” rule of

Bayesian updating. By comparison, there is no “canonical” extrapolation

rule. Nevertheless, there is a common intuition that extrapolating a belief

from partial data should follow some parsimony criterion. In particular,

the solution concepts cited in the Introduction all involve a parsimonious

treatment of correlations. When players lack suffi cient understanding of the

game’s structure or their opponent’s preferences, this is a plausible criterion

for extrapolating beliefs from partial learning feedback.

The maximum-entropy criterion (which originates from statistical physics

and has a rich tradition in data analysis (see Jaynes (1957)) systematizes this

idea: It regards minimal assumptions on correlations as parsimonious, and

thus looks for the distribution that exhibits maximal statistical independence

subject to being consistent with observed correlations. To see this point

from a slightly different angle, let q∗ denote the uniform distribution over

XN(Ri), and consider a reformulation of the first stage in the belief-formation

procedure, which changes the objective into

min
q∈∆(XN(Ri))

 ∑
z∈XN(Ri)

q(z)
ln(q(z))

ln(q∗(z))


This formulation is equivalent because q∗ is uniform, and therefore ln(q∗(z))

is a constant. The expression in the squared brackets is the relative-entropy

distance (a.k.a Kullback-Leibler divergence) of q from q∗. Thus, the extrap-

olated belief pRi minimizes the relative-entropy distance from the uniform

distribution, from among all distributions over XN(Ri) that are consistent

with (pS)S∈Ri . The interpretation is that the player initially has a uniform

(“Laplacian”) prior over X, and then he learns the true marginals (pS)S∈Ri .
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When these marginals refute the Laplacian belief, the player revises it in a

minimalistic fashion that is captured by relative-entropy distance.

Equilibrium

Having defined players’ beliefs as a function of their types, we are ready

to introduce the notion of equilibrium, which is a standard trembling-hand

perfection concept.

Definition 1 Fix ε > 0 and the exogenous components of the prior p. A

profile of full-support strategies (σ1, σ2) is an ε-equilibrium if for every i = 1, 2

and every ai, si, Ri for which p(ai | si, Ri) > ε,

ai ∈ arg max
a′i

∑
xN(Ri)

pRi(xN(Ri) | si, Ri, a
′
i)ui(xN(Ri))

A strategy profile (σ∗1, σ
∗
2) (which need not satisfy full support) is an equilib-

rium if it is the limit of a sequence of ε-equilibrium with ε→ 0.

Establishing existence of equilibrium is straightforward. Because pRi is a

continuous function of p, the proof is essentially the same as in the case of

standard trembling-hand perfect equilibrium.

2.1 Calculating and VisualizingMaximum-Entropy Ex-

trapolation

Calculating the maximum-entropy extension of a given collection of mar-

ginal distributions can be non-trivial. However, in many cases it takes a

tractable, interpretable form. Indeed, some of these special cases have ef-

fectively appeared in the literature on equilibrium models with non-rational

expectations, and the maximum-entropy criterion can therefore be regarded

as a principle that unifies them.

The simplest case is where Ri = {{S}}, where S ⊂ L. That is, player i

receives complete data about the joint distribution of a particular subset of
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variables. In this case, pRi = pS - this is pinned down by the requirement that

the player’s belief is consistent with the marginal distribution he has learned;

there is no need to apply maximum entropy. While this may seem like a

trivial case, it often has significant behavioral implications, arising from the

fact that the player’s belief is defined over XS rather than X. E.g., suppose

that the realizationRi = {{δRi , δai}, {δa1 , δa2}} in Section 1.1 is replaced with
{{δa1 , δa2}}. Then, player i’s belief over aj conditional on (Ri, ai) remains

the same, and therefore the equilibrium analysis is unchanged. Piccione and

Rubinstein (2003), Eyster and Piccione (2013) and Eliaz et al. (2018) study

interactive models in which agents’beliefs can be described in these terms.

In macroeconomics, such beliefs appear in so-called “restricted perceptions

equilibrium”(see Woodford (2013)).

Another simple example is when R consists of mutually disjoint subsets

of L. The maximum-entropy extension in this case is

pR =
∏

S∈R
pS

E.g., consider the realization R1 = {{lθ}, {la2}}, which only records the mar-
ginal distributions (p(θ)) and (p(a2)) without conveying any data about the

correlation between the two variables. Then, pR1 is the distribution q over

(θ, a2) that minimizes ∑
θ,a2

q(θ, a2) ln q(θ, a2)

subject to the constraints∑
a2

q(θ, a2) = p(θ) for all θ and
∑
θ

q(θ, a2) = p(a2) for all a2

We can now write down the first-order conditions of the Lagrangian of

this constrained minimization problem and obtain the solution pR1(θ, a2) ≡
p(θ)p(a2). Thus, the maximum-entropy extension of the marginals over in-

dividual variables treats them as mutually independent.
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Slightly more complicated examples involve R-information realizations

consist of intersecting subsets. E.g., suppose that x = (θ1, θ2, R1, R2, a1, a2),

where θ1 and θ2 are two components that define the state of Nature. Consider

the realization R1 = {{lθ1 , lθ2}, {lθ2 , la2}}, indicating that player 1 learns the

distribution of the state of Nature as well as the joint distribution of player 2’s

action and a coarse description of the state of Nature (given by the component

θ2). The maximum-entropy extension of these marginals is

pR(θ1, θ2, a2) = p(θ1, θ2)p(a2 | θ2)

This is what the notion of analogy-based expectations in static games (Jehiel

and Koessler (2008) would prescribe when θ2 is defined as the analogy class

to which (θ1, θ2) belongs.

Mailath and Samuelson (2018) analyze information aggregation under a

similar model of belief formation. The relevant variables for an individual

player are the consequence variable z, a collection of variables xM that he

regards as suffi cient predictors of z, and a profile b of other players’ be-

liefs (which in principle can be identified with their actions). Mailath and

Samuelson assume that the player’s subjective belief over these variables is

p(b)p(xM | b)p(f | xM). This is the maximum-entropy extension of the mar-

ginals p(b, xM) and p(xM , f), and therefore can be described in terms of the

present formalism.

The preceding examples are all special cases of a more general result,

which I briefly present now as all the examples in this paper utilize it.3

Definition 2 (Running Intersection Property) The collection of sub-
sets R satisfies the running intersection property (RIP) if its elements can
be ordered S1, ..., Sm such that for every k = 2, ...,m, Sk ∩ (∪j<kSj) ⊆ Si for

some i = 1, ..., k − 1.
3The material here is taken from Spiegler (2017a), where I studied a behaviorally

motivated procedure for extrapolatings beliefs from partial data, which coincides with
maximum entropy when the combinatorial property is satisfied.
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RIP holds trivially form = 2. Them = 3 collection {{1, 2}, {2, 3}, {3, 4}}
satisfies the property, whereas the m = 3 collection {1, 2}, {2, 3}, {1, 3, 4}}
violates it. Hajek et al. (1992) show that whenR satisfies RIP, the maximum-

entropy extension of (pS)S∈R is given by

pR(xN(R)) =
∏

S1,...,Sm
p(xSk−(∪j<kSj) | xSk∩(∪j<kSj)) (1)

where the enumeration 1, ...,m validates the running intersection property.

For instance, when R = {{1, 2}, {2, 3}, {3, 4}},

pR(x1, x2, x3, x4) = p(x1, x2)p(x3 | x2)p(x4 | x3) (2)

= p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)

Thus, RIP allows pR to be written as a factorization of p(xN(R)) into

marginal and conditional distributions. Moreover, the factorization has a

causal interpretation. For instance, (2) looks as if it is consistent with the

causal chain 1 → 2 → 3 → 4. This is a general property. Suppose that R

satisfies RIP. Define a directed acyclic graph G = (N,E), where N = N(R)

is the set of nodes and E ⊂ N × N is the set of directed links (that is,

(j, i) ∈ E means that there is a link j → i). Slightly abusing notation, define

G(i) = {j ∈ N | (j, i) ∈ E}. A subset of nodes C ⊂ N is a clique in G if

there is a link between any pair of nodes in C (that is, for every i, j ∈ C,

i 6= j, (i, j) ∈ E or (j, i) ∈ E). A clique is maximal if it is not contained in
another clique. For any prior p, define pG as the factorization of p according

to G, given by the formula

pG(xN) =
∏

i∈N
p(xi | xG(i))

This is known in the literature as a Bayesian-network factorization formula

(e.g., see Cowell et al. (1999)).

The following is a restatement of a result by Hajek et al. (1992) - see
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Spiegler (2017a) for more details.

Proposition 3 Suppose that R satisfies RIP. Then, there exists a directed

acyclic graph G such that pG ≡ pR. Moreover, G satisfies two additional

properties. First, it is perfect - i.e., G(i) is a clique for every i ∈ N . Second,
the set of maximal cliques in G is R.

This result establishes that when R satisfies RIP, the maximum-entropy

extension of the agent’s archival data can be equivalently described as the

outcome of fitting a subjective causal model - formalized as a directed acyclic

graph - to the objective distribution p. Moreover, R is the set of maximal

cliques in the graph. Finally, the graph is perfect, which implies a number

of important and useful properties (see Spiegler (2017a,b)). In particular, it

induces correct marginal distributions over all individual variables.

The graphical representation of pR under RIP has two important roles.

First, it offers a convenient visualization of the player’s archive-information.

This in turn makes the conditional independence properties of pR visible and

facilitates calculations. Second, it highlights the feature that the belief that

the player extrapolates from partial data looks as if he imposes a false causal

interpretation on observed correlations - as we saw in Section 1.1. In all the

examples presented in this paper, players’R-information satisfies RIP.

3 Correlation between News and Archival In-

formation: A Market Competition Game

In this section and the next I offer a number of examples that illustrate the

formalism. In each case, I show how the formalism can effi ciently capture a

realistic feature of real-life strategic interactions. One such feature is correla-

tion between the two components of a player’s type - namely, his news- and

archive-information. In some contexts, players who are more knowledgeable
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about the current situation are more sophisticated in general, and therefore

likely to know more about the game’s history. In other cases, we may view

the two components as substitutes that may arise from an unmodeled prior

stage of information acquisition: A player can become an expert on current

affairs or history but not on both.

The following example develops this theme in the context of a stylized

market entry game. The state of the world is x = (θ, s1, s2, R1, R2, a1, a2),

where θ ∈ {0, 1} indicates whether there is demand for a certain product.
The players are firms whose market access is uncertain: si = 1 (0) means

that the technology for making the product is available (unavailable) to firm

i. When si = 0, the firm’s only feasible action is ai = 0 (inactivity). In

contrast, when si = 1, the firm can also choose to be active in the market

(an action denoted ai = 1 ). Note that player i’s action set varies with its

news-information si. Firm i’s payoff function is ui(θ, a1, a2) = θai(d − aj),
where d ∈ (0, 1

2
) represents the size of market demand. The interpretation

is that a single active firm makes positive profits, and when both firms are

active, competitive pressures result in negative profits.

The firm’s R-information can take two values, referred to by the short-

hand notation 0 and 1 and given explicitly as follows:

Ri = 0 : {{δθ, δs1}, {δθ, δs2}, {δs1 , δa1}, {δs2 , δa2}}
Ri = 1 : {{δθ, δs1 , δa1}, {δθ, δs2 , δa2}}

The exogenous components of the prior p are as follows:

(i) p(θ = 1) = 1
2
.

(ii) p(Ri = 1) = 1
2
, independently of θ and of Rj.

(iii) For every i = 1, 2 and every θ, p(si = θ | θ, Ri) = qRi independently of

Rj, where q1, q0 ≥ 1
2
. Denote

k =
2d

q0 + q1

∈ (0, 1)
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This parameter measures the size of market demand relative to firms’ex-

pected market access.

Let us interpret the notion of a player’s type in this example. The variable

si is a conventional signal that determines firm i’s market access. When it

is highly correlated with θ, the firm is “savvy”: it tends to have the technol-

ogy for delivering a product in demand. However, “savviness”has another

dimension, given by the firm’s archive-information. When Ri = 1, firm i

fully grasps the joint distribution of demand and any individual firm’s mar-

ket access and behavior. In contrast, Ri = 0 means that it lacks direct

evidence regarding this distribution: it only learns the pairwise correlations

of individual firms’market access with their behavior and with market de-

mand. The parameters q1 and q0 determine the correlation between firms’

N -information and R-information. When q1 > q0 (q1 < q0) the correlation

is positive (negative): a firm with richer archive-information is more (less)

likely to be “savvy”in the sense that its technology matches demand.

The assumption that firms earn zero payoffs for sure when θ = 0 implies

that firms’beliefs regarding θ are irrelevant: the only thing that matters for

firm i’s decision is its prediction of aj conditional on θ = 1. In particular,

firm i chooses ai to maximize

ai · [d− pRi(aj = 1 | θ = 1)]

Both realizations of Ri satisfy RIP. Furthermore, it is easy to see, using

the tools of Section 2.1, that pRi treats aj, sj as independent of ai, si con-

ditional on θ. Since the only thing that matters for player i’s belief is the

mapping from θ to aj, we can simplify the definition of Ri w.l.o.g:

Ri = 0 : {{δθ, δsj}, {δsj , δaj}}
Ri = 1 : {{δθ, δsj , δaj}}

That is, the only relevant aspect of a firm’s archive-information is the data
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about the joint distribution of θ and its competitor’s market access and be-

havior. When Ri = 1, firm i’s archive-information fully documents the joint

distribution of θ and aj. Therefore, its conditional prediction is consistent

with rational-expectations:

pRi=1(aj = 1 | θ = 1) = p(aj = 1 | θ = 1)

In contrast, when Ri = 0, firm i’s conditional prediction is

pRi=0(aj = 1 | θ = 1) =
∑
si

p(sj | θ = 1)p(aj = 1 | sj)

By the assumption that firm j is forced to play aj = 0 when sj = 0, this can

be simplified into

pRi=0(aj = 1 | θ = 1) = p(sj = 1 | θ = 1)p(aj = 1 | sj = 1)

The following elaboration of these formula highlights the role of Rj as a

confounder of the relation between sj and aj; pRi=1 properly accounts for it,

pRi=1(aj = 1 | θ = 1) =
∑
Rj

p(Rj)p(sj = 1 | θ = 1, Rj)p(aj = 1 | sj = 1, Rj)

whereas pRi=0 neglects it and wrongly presumes that aj ⊥ θ | sj, such that
pRi=0(aj = 1 | θ = 1) can be written as∑

Rj

p(Rj)p(sj = 1 | θ = 1, Rj)

∑
Rj

p(Rj | sj = 1)p(aj = 1 | sj = 1, Rj)


This effect can also be illustrated graphically, using the tools of Section

2.1 and focusing on the relevant variables θ, sj, aj. The belief pRi=0(aj =

1 | θ = 1) is consistent with the DAG θ → sj → aj, whereas the belief

pRi=1(aj = 1 | θ = 1) is consistent with a DAG that adds a direct link θ → aj
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to this graph.

Importantly, if firms’R-information were constant, this confounding ef-

fect would disappear and pRi=0(aj = 1 | θ = 1), too, would coincide with

the rational-expectations prediction. We are thus witnessing a similar “boot-

strapping”effect to the one observed in Section 1.1: the dependence between

firms’market access and market behavior is confounded by their type vari-

ation, an effect that one of these types fails to detect because of its data

limitations.

The following analysis focuses on symmetric equilibria. I refer to p(a =

1 | θ = 1) as themarket-activity rate that characterizes the equilibrium. I use

the notation αR = p(a = 1 | s = 1, R) to describe the equilibrium strategy

of firms of type R.

Rational-expectations benchmark

Because the precision of firms’signals is immaterial for their decisions, the

example has a stark rational-expectations benchmark. Suppose we assumed

that the only difference between the realizations Ri = 0 and Ri = 1 lies in

the precision of the signal si - i.e., both types have rational expectations,

and their only difference is that q1 6= q0. Then, we would have a conven-

tional game with incomplete information, in which each firm i receives a

conditionally independent signal si with type-dependent accuracy. Because

both firm types in this alternative model have rational expectations, they

make same prediction of aj conditional on θ = 1. While it is possible to

sustain symmetric Nash equilibria in which firms’mixture over actions (con-

ditional on having market access) are type-dependent, all these equilibria

have a market-activity rate

p(a = 1 | θ = 1) = d (3)

In particular, there is a symmetric Nash equilibrium in which

α1 = α0 = k (4)
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Let us now turn to the original specification of the example, when Ri = 0

induces a potential departure from rational expectations. Observe that we

can sustain an equilibrium in which firms play the type-independent strategy

(4), such that the market-activity rate is given by (3). The reason is that

under such a strategy profile, firms’R-information ceases to function as a

confounder, and therefore pRi=0 does not distort the objective mapping from

θ to aj. The question is whether there are symmetric equilibria that give rise

to different market-activity rates. The result provides the answer.

Proposition 4 (i) When q1 ≥ q0, the only symmetric equilibrium is the one

where firms play the type-independent strategy (4). As a result, the equilib-

rium market-activity rate coincides with the rational-expectations benchmark

(3).

(ii) When q1 < q0, there is one symmetric equilibrium in which the market-

activity rate departs from the rational-expectations benchmark. In particular:

(iia) If k > 1
2
, then α0 = 2k − 1, α1 = 1, and the market-activity rate is

1

2
q1 +

1

2
q0 (2k − 1) < d

(iib) If k < 1
2
then α0 = 2k, α1 = 0, and the market-activity rate is

q0k > d

Proof. Consider a symmetric equilibrium. By definition, p(a = 1 | s =

0, R) = 0 for both R = 0, 1. Recall the notation αR = p(a = 1 | s = 1, R).
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Because d < 1, it must be the case that in any symmetric equilibrium,

α0 > 0 or α1 > 0, as well as α0 < 1 or α1 < 1. As observed earlier, a

firm of type R chooses to be active (a = 1) with positive probability only if

pR(a = 1 | θ = 1) ≥ d. Therefore, α1 > α0 only if

pR=1(a = 1 | θ = 1) < pR=0(a = 1 | θ = 1) (5)

Let us derive explicit expressions for the two sides of this inequality:

pR=1(a = 1 | θ = 1) = p(a = 1 | θ = 1) =
1

2
q1α1 +

1

2
q0α0

whereas

pR=0(a = 1 | θ = 1) =

(
1

2
q1 +

1

2
q0

)(
1

2
α1 +

1

2
α0

)
The latter expression is obtained by plugging the terms

p(sj = 1 | θ = 1) =
1

2
q1 +

1

2
q0

and

p(aj = 1 | sj = 1) =
p(sj = aj = 1)

p(sj = 1)

=
1
2
(1

2
q1α1 + 1

2
q0α0) + 1

2
(1

2
(1− q1)α1 + 1

2
(1− q0)α0)

1
2

=
1

2
α1 +

1

2
α0

Then, (5) becomes

1

2
q1α1 +

1

2
q0α0 <

(
1

2
q1 +

1

2
q0

)(
1

2
α1 +

1

2
α0

)
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which is equivalent to

α1(q1 − q0) < α0(q1 − q0)

Suppose q1 ≥ q0. Then, this inequality contradicts the inequality α1 > α0.

A similar contradiction is obtained for α1 < α0. It follows that when q1 ≥ q0,

it is impossible to sustain an equilibrium in which pR=1(a = 1 | θ = 1) 6=
pR=0(a = 1 | θ = 1) - hence, the only possible equilibrium is one where

α1 = α0 ∈ (0, 1). Therefore, the only possible symmetric equilibrium is the

one given by (4), such that the market-activity rate is (3). This establishes

part (i).

Now suppose q1 < q0. Then, the above contradiction is not reached, and

it is possible to sustain equilibria with α1 6= α0. If α1 ∈ (0, 1), firms of type

R = 1 are indifferent between the actions. But their indifference condition

immediately gives (3). Therefore, in order to sustain an equilibrium with a

different market-activity rate, we need α1 = 0 or α1 = 1, such that α0 ∈ (0, 1)

- i.e., firms of type R = 0 are indifferent between the two actions. Plugging

each of these cases α1 = 1 or α1 = 0 into pR=0(a = 1 | θ = 1) yields the two

equilibria described in part (ii).

This result shows how the framework constrains our ability to capture

differential market performance among “diversely sophisticated”firms. In

order to sustain equilibria in which the market-activity rate departs from

the rational-execptations benchmark, it must be the case that q1 < q0 - i.e.,

there is negative correlation between the two “savviness”components. This

means that if a firm with superior news-information also has better archive-

information, firms’behavior in symmetric equilibrium must be independent

of their type, and therefore their performance is also the same.

The non-standard equilibrium that exists when q1 < q0 is unique, yet

its precise structure depends on the size of market demand d. When d is

relatively small, the “sophisticated”firms of typeR = 1 choose to be inactive,
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while the “naive”firms of type R = 0 are active with positive probability.

The latter firms perceive the market-activity rate to be equal to d and predict

zero profits. The actual market-activity rate is above d, such that active firms

make negative profits. In contrast, when d is relatively high, firms of type

R = 1 choose to be active, while the “naive”firms of type R = 0 are active

with positive probability. As in the previous case, the latter firms perceive

the market-activity rate to be equal to d and predict zero profits. The actual

market-activity rate is below d, such that being active brings positive profits.

4 Information about Archive-Information: A

Coordination Game

In this section I illustrate another aspect of the formalism’s expressive scope

- specifically, how it enables us to incorporate novel, realistic aspects of high-

order reasoning. For expositional clarity, I fix the conventional aspects and

vary the novel ones. The game that serves as my template is familiar from the

“global games”literature since Rubinstein (1989), Carlsson and van Demme

(1993) and Morris and Shin (1998). Its payoff structure makes high-order

strategic reasoning crucial for players’behavior, and therefore enables us to

illustrate the novel types of high-order reasoning that the present formalism

can capture. In particular, we will see the failures to coordinate that arise

from players’limited news-information or archive-information regarding the

opponent’s archive-information.

Throughout the section, I examine a 2× 2 game in which a1 and a2 take

values in {0, 1} and the payoff matrix is

a1\a2 1 0

1 δθ, δθ −1, 0

0 0,−1 0, 0
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where δ ∈ {0, 1} is a constant, θ ∈ {0, 1} is the state of Nature, and
p(θ = 1) = 1

2
. When θ is common knowledge and players have rational

expectations, they both find a = 0 a strictly dominant action when θ = 0,

whereas under θ = 1 they know they are playing a coordination game with

two Nash equilibria: (0, 0) and (1, 1).

4.1 News-Information about Archive-Information

Suppose that player 1 has complete R-information with probability one.

Therefore, we can omit R1 as a variable from the description of the state

of the world. Player 2’s R-information is distributed independently of θ.

With probability α ∈ (0, 1
2
), R2 = {{lθ, la1 , la2}} - a realization also denoted

R2 = 1. With the remaining probability 1 − α, R2 = {{lθ}, {la1}, {la2}} - a
realization also denoted R2 = 0. Thus, R2 records whether player 2 learns

the correlation the state of Nature and players’actions.

As to players’N -information, both players perfectly learn the realization

of θ. In addition, player 1 receives a signal sarch1 ∈ {0, 1} regarding the value
of R2. Assume p(sarch1 = R2) = q for every R2, independently of θ, where q ∈
(1

2
, 1). Player 1’s N -information is thus (θ, sarch1 ). Player 2’s N -information

consists of θ alone. Therefore, there is no need to include a distinct variable

s2 in the definition of the state of the world: x = (θ, sarch1 , R2, a1, a2).

Let us construct player 2’s first-stage (unconditional) beliefs as a function

of his R-information: pR2=1(θ, a1, a2) = p(θ, a1, a2) and pR2=0(θ, a1, a2) =

p(θ)p(a1)p(a2). The derivations correspond to the first two special cases

presented in Section 2.1. It follows that player 2’s belief conditional on his

type and action is

pR2=1(a1 | θ, R2, a2) = p(a1 | θ)
pR2=0(a1 | θ, R2, a2) = p(a1)

The realization R2 = 0 captures a “fully cursed” player (as in Eyster
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and Rabin (2005)) who does not perceive the correlation between player 1’s

action and the state of Nature. Following Ettinger and Jehiel (2010), this

case can also be interpreted as a situation in which player 2 commits the

Fundamental Attribution Fallacy - i.e., he does not realize that player 1’s

behavior can be influenced by the state of Nature. More concretely, imagine

that players’dilemma is whether to act considerately in a social situation.

When θ = 0, players cannot afford to be considerate. When θ = 1, there are

gains from mutually considerate behavior. Player 1’s action is potentially

responsive to the social situation. However, when R2 = 0, player 2 lacks

access to the record of player 1’s past behavior and does not get to learn

this correlation; he extrapolates a belief that treats player 1’s behavior as a

non-situational statistical pattern.

While the realizationR2 = 1 does not exhibit the fundamental attribution

error, it does not induce rational expectations. Rather, it captures a “second-

order” attribution error : the player fails to realize player 1’s behavior is

responsive to his news-information sarch1 about whether player 2 exhibits the

fundamental (“first-order”) attribution error.

Proposition 5 There is a unique equilibrium in this example, in which both
players always play a = 0.

Proof. When θ = 0, both players choose a = 0. To see why, note first that

player 1 as well as player 2 under R2 = 1 have rational expectations, and

therefore correctly recognize that a = 0 is a dominant action under θ = 0.

When R2 = 0, we saw that player 2 believes that player 1 mixes over

actions independently of θ, R2, a2. Since p(θ = 1) = 1
2
, the previous para-

graph implies that p(a1 = 1) ≤ 1
2
. Therefore, player 2’s expected utility from

a2 = 1 against his subjective belief is a2 = 0, regardless of the value of θ. We

have thus established that a2 = 0 in equilibrium whenever θR2 = 0.

Let us try to sustain an equilibrium in which p(a1 = 1 | θ = 1) > 0. First,
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derive player 1’s posterior belief regarding R2 as a function of his signal sarch1 :

p(R2 = 1 | sarch1 = 1) =
αq

αq + (1− α)(1− q)

p(R2 = 1 | sarch1 = 0) =
α(1− q)

α(1− q) + (1− α)q

Recall that player 2 plays a2 = 0 whenever θR2 = 0. By our assumptions

on α and q, p(R2 = 1 | s1 = 0) < 1
2
. Therefore, when player 1 observes

sarch1 = 0, his unique best-reply is a1 = 0. It follows that

p(a1 = 1 | θ = 1) ≤ p(s1 = 1) = αq + (1− α)(1− q) < 1

2

This means that player 2’s best-reply is a2 = 0, regardless of R2. Player 1’s

best-reply is necessarily a1 = 0 regardless of s1, a contradiction. It follows

that player 1 always plays a1 = 0 in any equilibrium. Completing the proof

is now straightforward.

Player 2’s “second-order attribution error” is the key to this negative

result. If R2 = 1 represented complete R-information, player 2 would be able

to infer from his own archive-information (if q is high enough) that player 1

is likely to observe sarch1 = 1 and play a1 = 1, such that player 2’s best-reply

would be a2 = 1. In contrast, our definition of R2 = 1 means that player 2

effectively fails to condition his forecast of a1 on R2. As a result, he ends up

underestimating the conditional probability that player 1 will choose a1 = 1.

4.2 Archive-Information about Archive-Information

In this sub-section, I analyze a situation in which equilibrium patterns arise

from players’ partial archive-information about their opponent’s archive-

information. We already saw a simple example of this phenomenon in Sec-

tion 1.1, where players’archive-information sometimes failed to include data
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about this variable. The following example is a more elaborate variant on

this theme.

Unlike the previous sub-section, this example treats both players symmet-

rically. Players have common archive-information R, which gets two values,

denoted 0 and 1 and distributed uniformly, independently of θ. Players’

news-information consists of θ and R. There is no need to specify a distinct

news-information variable, such that the state of the world x can be written

as x = (θ, R, a1, a2). Players’R-information gets two values, denoted 0 and

1 and given explicitly as follows:

Ri = 0 : {{lθ, la1}, {lθ, la2}}
Ri = 1 : {{lθ, la1}, {lθ, la2}, {lR, laj}

Thus, the fluctuation in player i’s type is whether he has archive-information

about player j’s archive-information. Specifically, Ri = 0 means that player

i only learns the joint distribution of individual players’ actions with the

state of Nature, whereas Ri = 1 means that the player also learns how player

j’s action correlates with his archive-information. The DAG representation

of Ri = 0 is a1 ← θ → a2, whereas the DAG representation of Ri = 1 is

R ← aj ← θ → ai. Assume that p(Ri = 1) = 1
2
for each player i, indepen-

dently of θ, Rj.

The causal interpretation of these DAGs is clearly absurd, because it

treats R as a consequence of aj. Nevertheless, it is useful for obtaining an

explicit expression for players’conditional beliefs. The DAGs make it clear

pRi satisfies the conditional-independence property aj, R ⊥ ai | θ. Therefore,
we can ignore ai when calculating player i’s belief over θ, aj:

pRi=1(θ, aj) = p(θ, aj)

pRi=1(θ, aj, R) = p(θ)p(aj | θ)p(R | aj)

In this example (as in Section 3), there are equilibria in which players’
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behavior is independent of R. The reason is that if aj is independent of R,

the realizations Ri = 1 and Ri = 0 become effectively identical, and therefore

there is no reason for player i to vary his action with R. And as in Section

3, when we look for equilibria that allow players’actions to vary with their

archive-information, only particular configurations can be sustained.

Proposition 6 There is a symmetric equilibrium in which p(ai = 1 | θ, R) =

θR for each i, if and only if δ ≥ 1
3
. There exist no additional symmetric pure-

strategy equilibria in which ai varies with R.

Proof. In any equilibrium, players choose a = 0 whenever θ = 0, indepen-

dently of R. The reasoning is the same as in the previous sub-section, and

therefore omitted here. Let us now derive player i’s conditional belief over

aj conditional on θ = 1 and each of the two realizations of R:

pRi=0(aj = 1 | θ = 1, R = 0) = p(aj = 1 | θ = 1)

and

pRi=1(aj = 1 | θ = R = 1) =
pRi=1(θ = R = aj = 1)∑
a′j
pRi=1(θ = R = 1, a′j)

=
p(θ = 1)p(aj = 1 | θ = 1)p(R = 1 | aj = 1)

p(θ = 1)
∑

a′j
p(a′j | θ = 1)p(R = 1 | a′j)

=
p(aj = 1 | θ = 1)p(R = 1 | aj = 1)

p(aj = 1 | θ = 1)p(R = 1 | aj = 1) + p(aj = 0 | θ = 1)p(R = 1 | aj = 0)

Suppose that players condition their (symmetric, pure-strategy) equilib-

rium action on R. Then, p(aj = 1 | θ = 1) = 1
2
, and therefore player

i’s best-reply is ai = 1. It follows that if we wish to sustain a symmetric

pure-strategy equilibrium in which ai varies with R, it must be the case that

p(aj = 1 | θ = 1, R) = R. We can now calculate pRi=1(aj = 1 | θ = R = 1),
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by plugging the following terms

p(aj = 1 | θ = 1) =
1

2
p(R = 1 | aj = 1) = 1

and

p(R = 1 | aj = 0) =
p(R = 1, aj = 0)

p(aj = 0)

=
p(R = 1)p(θ = 0)

p(θ = 0) + p(θ = 1)p(R = 0)
=

1
2
· 1

2
1
2

+ 1
2
· 1

2

=
1

3

Thus,

pRi=1(aj = 1 | θ = R = 1) =
1
2
· 1

1
2
· 1 + 1

2
· 1

3

=
3

4

Therefore, in order for ai = 1 to be a best-reply when θ = R = 1, it must be

the case that
3

4
· δ − 1

4
· 1 ≥ 0

hence, δ ≥ 1
3
is a necessary and suffi cient condition for a symmetric pure-

strategy equilibrium in which ai = θR for every player i. Any other equilib-

rium in this category exhibits R-independent actions.

Thus, as long as the gains from good coordination in θ = 1 are suffi ciently

high, it is possible to sustain an equilibrium in which players coordinate ef-

ficiently if and only if they have rich archive-information. No other pattern

of correlation between players’actions and their archive-information is sus-

tainable in symmetric pure-strategy equilibrium.

Importantly, the requirement δ ≥ 1
3
in this result arises from the fact

that R = 1 represents partial archive-information. In this case, player i

learns the pairwise correlation of aj with θ and R; his failure to learn the

joint correlation of aj with θ, R limits the extent to which he updates his

belief over aj. By comparison, consider the alternative specification in which

32



R = 1 represents complete archive-information, such that it induces rational

expectations. Then, the above equilibrium can be sustained for any value of

δ.

4.3 Hierarchical Archive-Information

The representation of a state of the world in terms of a collection of variables

is fundamental to the formalism. Furthermore, unlike a standard model,

collapsing the collections θ, si or z into a single variable can entail a loss

of generality. For instance, suppose that the state of Nature θ has multiple

dimensions, such that θ = (θ1, ..., θK). Player i’s archive-information Ri may

only provide partial data about the joint distribution of these components -

i.e., for every k = 1, ..., K there is S ∈ Ri that includes lθk , yet there exists

no S ∈ Ri that contains {lθ1 , ..., lθK}. that contains e.g., without loss of
generality. The belief distortions that arise from this partial R-information

cannot be reproduced if we collapse θ into a single variable.

Perhaps the most interesting case of this proliferation of variables is where

players’archive-information itself is represented by a collection of variables.

In the examples of Sections 1.1 and 4.2, a player’s R-information was one of

the variables about which the other player had R-information. The formal-

ism’s capacity for such cross-references is one of its prime virtues - in analogy

to the Harsanyi formalism’s ability to define one player’s N -information re-

garding another player’s N -information. And as in the Harsanyi model, it is

natural to think of hierarchical constructions of this inter-dependence.

The starting point of a hierarchical definition of players’R-information

is a collection of basic variables. Let B be the set of labels of the basic

variables. These would include variables that define the state of Nature,

players’news-information and actions, as well as consequence variables. For

each player i, there is a collection of variables R1
i , ..., R

m
i , m ≥ 2, where R1

i

is a collection of subsets of B; and for every k = 2, ...,m, Rk
i is a collection

of subsets of B ∪ {lR1i , ..., lRk−1i
} ∪ {lR1j , ..., lRk−1j

}, where each of these subsets
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includes lRk−1i
or lRk−1j

. Define Ri = ∪k=1,...,mR
k
i .

The interpretation of this hierarchical construction is natural: R1
i is

the player’s first-order archive-information, describing his knowledge of cor-

relations among basic variables; R2
i is the player’s second-order archive-

information, describing his knowledge of how players’ first-order archive-

information is correlated with the basic variables; and so forth.

The following is a simple example of hierarchically defined R-information

in the context of our coordination game. Players have commonR-information,

which is distributed independently of θ. Players’N -information coincides

with θ - i.e., they perfectly learn the state of Nature. The basic variables are

θ, a1, a2. Suppose that for every k = 1, 2, ..., Rk takes two values, 0 and 1,

which are defined as follows:

k Rk = 0 Rk = 1

1 {{lθ}, {la1}, {la2}} {{lθ, la1 , la2}}
2 ∅ {{lθ, la1 , la2 , lR1}}
3 ∅ {{lθ, la1 , la2 , lR1 , lR2}}
...

...
...

m ∅ {{lθ, la1 , la2 , lR1 , ..., lRm−1}}
...

...
...

The only values of R that are realized with positive probability are those for

which Rk = 1 implies Rk−1 = 1, for every k > 1. Therefore, it is convenient

to represent R by the largest number k for which Rk = 1. Specifically, let

p(R = k) = δ(1 − δ)k for every k = 0, 1, ... Note that R = k means that

players perceive actions as a function of θ, R1, ..., Rk−1.

Proposition 7 Suppose that δ > 1
2
. Then, there is a unique equilibrium, in

which players always play a = 0.

Proof. The proof is by induction on R. As a first step, observe that by
the same argument as in previous sub-sections, ai = 0 whenever θR1 = 0.
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Suppose that we have shown that ai = 0 when θ = 1 and R < k, and

consider the case of player 1, say, when θ = 1 and R = k. The player will

find it optimal to play a1 = 1 only if pR=k(a2 = 1 | θ = 1, R = k, a1 = 1) > 1
2
,

but this does not hold since

pR=k(a2 = 1 | θ = 1, R = k, a1) = p(a2 = 1 | θ = R1 = · · · = Rk−1 = 1)

≤ p(R ≥ k)

p(R ≥ k − 1)
= 1− δ < 1

2

The intuition for this result is simple. When players have R = k, they

only perceive correlations between actions and R-information of order k − 1

and below. By the assumption that δ > 1
2
, players are more likely to lack

R-information of order k conditional on having R-information of order k−1,

and by the inductive step, they play a = 0 in that case. It follows that when

a player has R = k, he believes it is more likely that the opponent will play

a = 0, hence the best-reply is to play a = 0, too.

5 Discussion of Related Literature

The literature contains a number of important game-theoretic solution con-

cepts in which players receive partial feedback regarding equilibrium behav-

ior, and where players’beliefs are purely based on partial learning, without

any display of strategic introspection. It is helpful to define each of these

proposals by two ingredients: the way it formalizes partial feedback, and the

belief-formation rule it assumes.

The closest approaches to the one in this paper are those in which players

extrapolate a belief from their feedback according to an explicit rule that

intuitively follows the correlation-parsimony principle. Osborne and Rubin-

stein (1998) assume that a player’s feedback takes the form of a collection of

finite samples taken from the conditional distributions over outcomes that is
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induced by each action. Players ignore sampling error and believe that the

sample associated with each action is perfectly representative of its true con-

ditional distribution over outcomes. Osborne and Rubinstein (2003) study a

variant of this concept, in which each player’s feedback consists of one sam-

ple drawn from the unconditional distribution over outcomes. In Esponda

(2008), the feedback sample is not finite but it is selective - i.e., it is drawn

from the distribution over outcomes conditional on players’equilibrium be-

havior. Players’rule for extrapolating from the sample reflects unawareness

of its selectiveness.

Jehiel (2005) and Jehiel and Koessler (2008) present a formalism that is

closest in spirit to the present paper, in the sense that a player’s feedback

limitation is a personal characteristic, rather than part of the definition of

the solution concept. Under this approach, each player best-replies to the

following coarsening of the true equilibrium distribution: the player parti-

tions the set of possible contingencies (histories in extensive games, states of

the world in Bayesian games) into “analogy classes”, such that the feedback

that he receives is the average distribution over contingencies within each

analogy class. His belief does not allow for finer variation within each anal-

ogy class. In Section 2.1 I showed how the present formalism can express this

belief-formation model. Thus, at least in the context of Bayesian games, the

archive-information formalism is a generalization of analogy-based expecta-

tions.

In other approaches that are closer to the tradition of self-confirming equi-

librium (Fudenberg and Levine (1993)), players do not extrapolate a belief

from limited feedback. Instead, they arrived at the game with a subjective,

possibly misspecified prior model, and they fit this model to the feedback.

For example, Esponda and Pouzo (2016) formalize feedback abstractly as a

general consequence variable (in applications, it typically coincides with the

player’s payoff, or with the realized terminal history in an extensive game).

Each player has a prior belief over a set of possible distributions over conse-
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quences conditional on the game’s primitives and the players’actions. This

set represents the player’s model, and it is misspecified if it rules out the true

conditional distribution. In equilibrium, the player’s belief is a conditional

distribution in this set that is closest (according to a modified Kullback-

Leibler Divergence) to the true equilibrium distribution. Battigalli et al.

(2015) assume a similar notion of feedback and adopt a non-probabilistic

model of beliefs in the decision-theoretic “ambiguity”tradition.

These two general approaches to belief formation - extrapolation from

feedback vs. fitting a subjective model to feedback - are not mutually exclu-

sive. In particular, in Section 2.1 we saw how pR can sometimes be interpreted

as the result of fitting a prior subjective (causal) model to the objective dis-

tribution. Note, however, that here the player’s feedback is not independent

of his prior model. E.g., when the player’s DAG is θ → s→ a, his feedback

enables him to learn the joint distributions over θ, s and θ, a.

Eyster and Rabin (2005) take a different interpretation to modeling dis-

torted equilibrium beliefs in games. In “fully cursed”equilibrium, a player

wrongly believes that the distribution over his opponents’actions is a measur-

able function of his own signal. In “partially cursed”equilibrium, a player’s

belief is a convex combination between the rational-expectations and fully

cursed beliefs. Eyster and Rabin regard this belief distortion as a behavioral

bias and do not attempt to derive it from explicit partial feedback or from an

explicit subjective model. However, one can easily reinterpret fully cursed

beliefs along these lines (see Jehiel and Koessler (2008)). Likewise, I will

show that the “model-based inference”in Mailath and Samuelson (2018) can

be described by the language of the present formalism.

The crucial difference between all the approaches described above and the

present paper is that in all these papers, limited feedback is either part of

the solution concept or a fixed, non-random characteristic of each player.4 In

4The only exception I am familiar with is the Appendix to Eyster and Rabin (2005),
where the parameter that defines the degree of a player’s cursedness is drawn from some
distribution.
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contrast, in the present paper players’limited feedback is a random variable

that constitutes an aspect of his type. And none of the existing approaches

involves an explicit model of players’uncertainty (including limited feedback)

regarding other players’feedback.

6 Conclusion

This paper took the idea of equilibrium modeling without rational expecta-

tions as a point of departure. Although the literature has explored a variety

of modeling approaches to this general idea, virtually all attempts treat the

departure from rational expectations as an aspect of the solution concept

or as a permanent fixture of individual players. The formalism presented

in this paper enriches the scope of equilibrium modeling with non-rational

expectations, by including individual players’limited feedback (called their

R-information) in their description of their type. Importantly, it describes

R-information in terms of the collections of variables about which the player

receives feedback. This language enables us to capture new and realistic

kinds of “high-order” reasoning, such as N -information or R-information

about another player’s R-information, as well as hierarchical constructions

of higher order. A natural next step is to extend the formalism to dynamic

strategic interactions, where a move by one player at an early decision node

can determine another player’s archive-information at a later decision node.

I plan to explore this direction in follow-up work.
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