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Abstract

Agents make predictions based on similar past cases, while also learning the

relative importance of various attributes in judging similarity. We ask whether

the resulting “empirical similarity” is unique, and how easy it is to find it.

We show that with many observations and few relevant variables, uniqueness

holds. By contrast, when there are many variables relative to observations,

non-uniqueness is the rule, and finding the best similarity function is computa-

tionally hard. The results are interpreted as providing conditions under which

rational agents who have access to the same observations are likely to con-

verge on the same predictions, and conditions under which they may entertain

different probabilistic beliefs.
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1 Introduction

Economic theory tends to assume that, given the same information, rational agents

would entertain the same beliefs: differences in beliefs can only arise from asymmetric

information. In the standard Bayesian model, this assumption is incarnated in the

attribution of the same prior probability to all agents, and it is referred to as the

“Common Prior Assumption”. Differences in beliefs cannot be commonly known, as

proved by Aumann (1976) in the celebrated “agreeing to disagree”result.

The Common Prior Assumption has been the subject of heated debates (see Mor-

ris, 1995, Gul, 1998, as well as Brandenburger and Dekel, 1987 in the context of

Aumann, 1987). We suggest that it might be easier to judge the reasonability of this

assumption and its appropriateness for various set-ups, if we delve into the process

of belief formation. That is, if we explicitly model the way in which agents generate

their beliefs, we can see under which conditions it makes sense to assume that differ-

ent agents, having access to the same information, will end up with the same beliefs,

and when it might be plausible to allow for disagreement among rational agents.

This paper makes a tentative step in this direction. We consider a specific process

of generation of probabilistic beliefs, and study conditions under which it is likely to

yield a unique prior, and conditions under which non-uniqueness is likely to arise.1 2

There are many situations in which empirical frequencies offer natural candidates

for probabilities. For example, an agent who considers buying an insurance policy

against car theft may access a large database of practically identical cases, and infer

what her probabilities should be from the relative frequency of thefts in the database.

But there are also many economic problems in which past cases are given, yet are

not entirely identical. In judging the likelihood of an imminent financial crisis or a

revolution, one would be silly to ignore past cases. At the same time, one may not

assume that all past observations are results of an i.i.d. process. Even if one were

to ignore possible causal relationships between past cases and future ones, each case

has suffi ciently many relevant details to make it unique. Hence, the calculation of

empirical frequencies is not as straightforward as in the example of a car theft, let

1When prior probabilities may vary across individuals, one may wish to study more general
models of beliefs, allowing for all the probabilities that rational agents might adopt. However,
we consider agents who, following Ramsey, (1926a,b), de Finetti, (1931,1937), Savage, (1954), and
Anscombe-Aumann (1963), insist on summarizing their beliefs in well-defined prior beliefs.

2The process of belief generation studied here can be embedded in a model of Bayesian learning
as well. See subsection 4.3 below.

2



alone in examples of chance games such as the toss of a coin.

We assume that in such problems agents use past data to estimate probabilities,

but also use their judgment to determine which cases are more similar, and therefore

more relevant for the problem at hand. Using similarity-weighted averages is an intu-

itive idea that appeared in statistics as “kernel methods”(Akaike, 1954, Rosenblatt,

1956, Parzen, 1962) and is also reminiscent of “exemplar learning”in psychology (see

Medin and Schaffer, 1978, and Nosofsky, 1988). Thus, it is a model of belief formation

that can be interpreted both normatively and descriptively, and it can also be derived

axiomatically (Billot, Gilboa, Samet, and Schmeidler, 2005, Gilboa, Lieberman, and

Schmeidler, [GLS] 2006). However, such a process begs the question: where would

the similarity function come from?

The notion of “second-order induction”suggests that the similarity function should

also be learnt from past cases. Using a given similarity function to learn from past

cases about future ones can be referred to as “first-order induction”; learning the

similarity function, that is, learning how this first-order induction should be done

is dubbed “second-order induction”. For example, suppose that one has to predict

the quality of a car. Children may make similarity judgments based on perceptual

features, such as color. Adults will typically realize that the make of the car is a more

important feature than its color. Asked why, a person might say, “Experience has

shown that cars with the same color may be very different in quality, and vice versa

—the exact same car can be found in very different colors. In short, over the years I

learned that color isn’t an important feature for judging quality.”

We model this type of reasoning by looking for a similarity function that provides

a good fit for the data. We use a leave-one-out cross-validation technique: for each

similarity function, within a given class, we consider the prediction it would suggest

for each given observation, based on the other ones. Each similarity function can

thus be assessed by the sum of squared errors its predictions would have had, and a

function that obtains a best fit is referred to as “an empirical similarity”.

We suggest this form of learning as an obviously-idealized model of the way people

naturally learn which variables are important for similarity judgments. Interestingly,

very similar processes were also suggested in psychology. The literature on “exemplar

learning”(see Shepard, 1957, Medin and Schaffer, 1978, and Nosofsky, 1984) suggests

that, when people face a categorization problem, the probability they would choose

a given category can be approximated by similarity-weighted frequencies, and that
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people learn the relative importance of different attributes in making their similarity

judgments (Nosofsky, 1988. See Nosofsky, 2014 for a survey).3

The learning process presented here has been suggested and analyzed in GLS

(2006) as a statistical technique. Indeed, it can also be interpreted normatively, as a

way of performing non-parametric statistics with a kernel function that is estimated

from the data. This is akin to finding an optimal bandwidth for kernel estimation (see,

for instance, Park and Marron, 1990). However, in this paper our focus is descriptive,

and we use the model to describe human reasoning.4

The paper studies the notion of empirical similarity and focuses on its implications

for the formation of beliefs by economic agents. We first point out that the empirical

similarity function need not take into account all the variables available. For reasons

that have to do both with the curse of dimensionality and with overfitting, one may

prefer to use a relatively small set of the variables to a superset thereof. We provide

conditions under which it is worthwhile to add a variable to the arguments of the

similarity function and discuss their applicability to economic set-ups. Next, we

observe that the empirical similarity need not be unique, and that people who have

access to the same database may end up using different similarity functions to obtain

the “best”fit. This is one reason that their predictions might disagree. Further, we

show that finding the best similarity function is a computationally complex (NP-Hard)

problem. Thus, even if the empirical similarity is unique, it does not immediately

follow that all agents can find it. Rational agents might therefore end up using

different, suboptimal similarity functions. This is a second reason why their beliefs

might disagree.

There are many modeling choices to be made, in terms of the nature of the vari-

ables (the predictors and the predicted), as well as the similarity function. We study

here two extreme cases: in the “binary”model all the variables take only the values

{0, 1}, and so does the similarity function. Further, we consider only similarity func-
tions that are defined by weights in {0, 1}: each variable is either taken into account
or not, and two observations are similar (to degree 1) if and only if they are equal

on all the relevant variables. In the “continuous”model, by contrast, all variables

3Observe that the tasks involved are different: in the literature we cite participants were asked
to categorize objects, and the similarity-weighted frequency is part of the psychologist’s model of
their categorization, whereas we consider agents who attempt to assess probabilities.

4In this sense our paper is similar to Bray (1982), who considers a statistical technique, namely
OLS, as a model of economic agents’reasoning.
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(predictors and predicted) are continuous, and the similarity function is allowed to

take any non-negative value as well. We focus on functions that are exponential

in weighted Euclidean distances where the weights are allowed to be non-negative

extended real numbers.

In both models we find the same qualitative conclusions: (i) If the number of

predictors is fixed, and the predicted variable is a function of the predictors, then, as

the number of observations grows following an i.i.d. process, the empirical similarity

will learn the functional relationship. The similarity function is likely to be unique in

the binary model, but even if it is not, different empirical similarity functions would

provide the same predictions (Propositions 2 and 4). By contrast (ii) If the number

of predictors is large relative to the number of observations, it is highly probable that

the empirical similarity will not be unique (Propositions 3 and 5). Further, (iii) If the

number of predictors is not bounded, the problem of finding the empirical similarity

is NPC (Theorems 1 and 2).

Revisiting the examples mentioned above, let us contrast the insurance and the

revolution problems. In the former, we try to estimate the probability of a car being

stolen. Several variables are relevant, such as the car’s worth, the neighborhood in

which it is parked, and so forth. However, one can think of this number is relatively

limited. At the same time, the number of observations that might reasonably be

considered i.i.d. is very large. In this type of problems it stands to reason that

different people would come up with the same similarity functions, or at least with

similarity functions that provide similar predictions. By contrast, in the revolution

example the number of observations is very limited. One cannot gather more data

at will, neither by experimentation nor by empirical research. To complicate things

further, the number of variables that might be relevant predictors may be very large.

Researchers may come up with novel perspectives on a given history, and suggest new

military, economic, and sociological variables (to name just a few categories) which

may be related to causes of successes and failures of revolutions. It is therefore not

surprising that experts may disagree on the best explanation of historical events, and,

consequently, on predictions for the future.

The paper is organized as follows. Section 2 deals with the questions of monotonic-

ity, uniqueness, and computational complexity of the empirical similarity function in

the binary model, while Section 3 provides the counterpart analysis for the continuous

model. Section 4 concludes with a general discussion.
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2 A Binary Model

2.1 Case-Based Beliefs

The basic problem we deal with is predicting a value of a variable y based on other

variables x1, ..., xm. We assume that there are n observations of the values of the x

variables and the corresponding y values, and, given a new value for the x’s, attempt

to predict the value of y. This problem is, of course, a standard one in statistics and

in machine learning. However, in these fields the goal is basically to find a prediction

method that does well according to some criteria. By contrast, our interest is in mod-

eling how people tend to reason about such problems5. We focus here on prediction

by rather basic case-based formulae.6 These are equivalent to kernel methods, but we

stick to the terms “cases”and “similarity”—rather than “observations”and “kernel”

—in order to emphasize the descriptive interpretation adopted here.

We assume that prediction is made based on a similarity function s : X × X →
R+. Such a function is applied to the observable characteristics of the problem at

hand, xp =
(
x1p, ..., x

m
p

)
, and the corresponding ones for each past observation, xi =

(x1i , ..., x
m
i ), so that s(xi, xp) would measure the degree to which the past case is similar

to the present one. The similarity function should incorporate not only intrinsic

similarity judgments, but also judgments of relevance, probability of recall and so

forth.7

In this section we present a binary model, according to which all the variables —

the predictors, x1, ..., xm, and the predicted, y —as well as the weights of the variables

in the similarity function and the similarity function itself take values in {0, 1}. This
is obviously a highly simplified model that is used to convey some basic points.

More formally, let the set of predictors be indexed by j ∈ M ≡ {1, ...,m} for
m ≥ 0. When no confusion is likely to arise, we will refer to the predictor as a

5Luckily, the two questions are not divorced from each other. For example, linear regression has
been used as a model of reasoning of economic agents (see Bray, 1982). Similarly, non-parametric
statistics suggested kernel methods (see Akaike, 1954, Rosenblatt, 1956, Parzen, 1962, and Silverman,
1986) which turned out to be equivalent to models of human reasoning. Specifically, a kernel-
weighted average is equivalent to “exemplar learning”in psychology, and various kernel techniques
ended up being identical to similarity-based techniques axiomatized in decision theory. (See Gilboa
and Schmeidler, 2012.)

6As in Gilboa and Schmeidler (2001, 2012).
7Typically, the time at which a case occurred would be part of the variables x, and thus recency

can also be incorporated into the similarity function.
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“variable” and also refer to the index as designating the variable. The predictors

x ≡ (x1, ..., xm) assume values (jointly) in X ≡ {0, 1}m and the predicted variable, y,
—in {0, 1}. The prediction problem is defined by a pair (B, xp) where B = {(xi, yi)}i≤n
(with n ≥ 0) is a database of past observations (or “cases”), xi = (x1i , ..., x

m
i ) ∈ X,

and yi ∈ {0, 1}, and xp ∈ X is a new data point. The goal is to predict the value of

yp ∈ {0, 1} corresponding to xp, or, more generally, to estimate its distribution.
Given a function s : X ×X → {0, 1}, the probability that yp = 1 is estimated by

the similarity weighted average8

ysp =

∑
i≤n s(xi, xp)yi∑
i≤n s(xi, xp)

(1)

if
∑

i≤n s(xi, xp) > 0 and ysp = 0.5 otherwise.

This formula is identical to the kernel-averaging method (where the similarity

s plays the role of the kernel function). Because the similarity function only takes

values in {0, 1}, it divides the database into observations (xi, yi) whose x values are

similar (to degree 1) to xp, and those who are not (that is, similar to degree 0), and

estimates the probability that yp be 1 by the relative empirical frequencies of 1’s in

the sub-database of similar observations.

Finally, we specify the similarity function as follows: given weights for the vari-

ables, (w1, ..., wm) ∈ X (≡ {0, 1}m), let

sw (xi, xp) =
∏

{j|wj=1}

1{xji=xjp} (2)

(where sw (xi, xp) = 1 for all (xi, xp) if wj = 0 for all j.) Thus, the weights (w1, ..., wm)

determine which variables are taken into consideration, and the similarity of two

vectors is 1 iff they are identical on these variables. Clearly, the relation “having

similarity 1”is an equivalence relation.

8Gilboa, Lieberman, and Schmeidler (2006) provide axioms on likelihood judgments (conditioned
on databases) that are equivalent to the existence of a function s such that (5) holds for any database
B. Billot, Gilboa, Samet, and Schmeidler (2005) consider the similarity-weighted averaging of
probability vectors with more than two entries.
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2.2 Empirical Similarity

Where does the similarity function come from? The various axiomatic results men-

tioned above state that, under certain conditions on likelihood or probabilistic judg-

ments, such a function exists, but they do not specify which function it is, or which

functions are more reasonable for certain applications than others. The notion of

second-order induction is designed to capture the idea that the choice of a similarity

function is made based on data as well. It is thus suggested that, within a given

class of possible functions, S, one choose a function that fits the data best. Finding
the weights w such that, when fed into sw, fit the data best renders the empirical

similarity problem parametric: while the prediction of the value of y is done in a

non-parametric way (as in kernel estimation), relying on the entire database for each

prediction, the estimation of the similarity function itself is reduced to the estimation

of m parameters.

To what extent does a function “fit the data”? One popular technique to evaluate

the degree to which a prediction technique fits the data is the “leave one out”cross-

validation technique: for each observation i, one may ask what would have been

the prediction for that observation, given all the other observations, and use a loss

function to assess the fit. In our case, for a database B = {(xi, yi)}i≤n and a similarity
function s, we simulate the estimation of the probability that yi = 1, if only the other

observations {(xk, yk)}k 6=i were given, using the function s; the resulting estimate

is compared to the actual value of yi, and the similarity is evaluated by the mean

squared error it would have had.

Explicitly, let there be given a set of similarity functions S. (In our case, S = { sw |w ∈ X }.)
For s ∈ S, let

ysi =

∑
k 6=i s(xk, xi)yk∑
k 6=i s(xk, xi)

if
∑

j 6=i s(xj, xi) > 0 and ysi = 0.5 otherwise. Define the mean squared error to be

MSE (s) =

∑n
i=1 (ysi − yi)

2

n
.

It will be useful to define, for a set of variables indexed by J ⊆ M , the indicator

function of J , wJ , that is,

wlJ =

{
1 l ∈ J
0 l /∈ J

.
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To simplify notation, we will use MSE (J) for MSE (swJ ).

The similarity functions we consider divide the database into sub-databases, or

“bins”, according to the values of the variables in J . Formally, for J ⊆ M and

z ∈ {0, 1}J , define the J-z bin to be the cases in B that correspond to these values9.

Formally, we will refer to the set of indices of these cases, that is,

b (J, z) =
{
i ≤ n

∣∣xji = zj ∀j ∈ J
}

as “the J-z bin”.

It will also be convenient to define, for J ⊆ M , and z ∈ {0, 1}J , j ∈ M\J , and
zj ∈ {0, 1}, the bin obtained from adding the value zj to z. We will denote it by

(
J · j, z · zj

)
= (J ∪ {j}, z′)

where z′l = zl for l ∈ J and z′j = zj.

Clearly, a set J ⊆ M defines 2|J | such bins (many of which may be empty).

A new point xp corresponds to one such bin. The probabilistic prediction for yp
corresponding to xp is the average frequency of 1’s in it. If a bin is empty, this

prediction is 0.5. Formally, the prediction is given by

y(J,z) =

∑
i∈b(J,z) yi

|b (J, z)| (3)

if |b (J, z)| > 0 and y(J,z) = 0.5 otherwise.

For the sake of calculating the empirical similarity, for each i ≤ n we consider the

bin containing it, b (J, z), and the value ysi is the average frequency of 1’s in the bin

once observation i has been removed from it. If b (J, z) = {i}, that is, the bin contains
but one observation, taking one out leaves us with an empty database, resulting in a

probabilistic prediction —and an error —of 0.5. Formally, the leave-one-out prediction

for i ∈ b (J, z) is

y
(J,z)
i =

∑
k∈b(J,z),k 6=i yk

|b (J, z)| − 1
(4)

if |b (J, z)| > 1 and y(J,z)i = 0.5 otherwise.

9Splitting the database into such bins is clearly an artifact of the binary model. We analyze a
more realistic continuous model in Section 3.
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Given the predictions y(J,z)i , we can now calculate MSE(J) for all the possible

similarity functions. We will not, however, stop here and select the similarity function

that minimizes the mean squared error as the “empirical similarity”. There is one

more element to consider. In choosing a subset of variables to be included in J , it

seems likely that people would prefer a smaller set of predictors, given a fixed level

of goodness of fit, and that they would even be willing to trade off the two.10 There

are two types of considerations leading to such a preference. The first, statistical

considerations are normative in nature, and have to do with avoiding overfitting. The

second are psychological, and have a descriptive flavor: people may not be able to

recall and process too many variables11. Moreover, one may argue that such preference

for a smaller set of predictors is evolutionarily selected partly due to the statistical

normative considerations. We will capture this preference using the simplest model

that conveys our point. Let us assume that the agent selects a similarity function

that minimizes an adjusted mean squared error. Formally, the agent is assumed to

select a set of indices J that minimizes

AMSE(J, c) ≡MSE(J) + c|J |

for some c ≥ 0. We will typically think of c as small, so that goodness of fit would

outweigh simplicity as theory selection criteria, but as positive, so that complexity

isn’t ignored. Given a cost c, we will refer to a similarity function s = swJ for

J ∈ arg minAMSE(J, c) as an empirical similarity function.

We now turn to analyze the properties of the empirical similarity, to address

the question of whether we should expect rational agents with access to a common

database to agree on their predictions.

2.3 Monotonicity

We start by showing that using a relatively small set of variables for prediction might

be desirable even with c = 0, because the goodness-of-fit (for a given database) can

10As we will shortly discuss, for case-based prediction the minimization of the MSE may favor
smaller sets of predictors even without the introduction of preference for simplicity.
11As a normative theory, the preference for simple theories is famously attributed to William

of Ockham (though he was not explicitly referring to out-of-sample prediction errors), and runs
throughout the statistical literature of the 20th century (see Akaike, 1974). As a descriptive theory,
the preference for simplicity appears in Wittgenstein’s Tractatus (1922) at the latest.

10



decrease when adding one more predictor: MSE can be non-monotone with respect

to set inclusion.12 The reason is a version of the problem known as “the curse of

dimensionality”: more variables that are included in the determination of similarity

would make a given database more “sparse”. The following example illustrates.

Example 1 Let n = 4 and m = 1. Consider the following database and the corre-

sponding MSE’s of the subsets of the variables:

i x1i yi

1 0 0

2 0 1

3 1 0

4 1 1

J MSE (J)

∅ 4/9

{1} 1

The specific form of the curse of dimensionality that affects the leave-one-out

criterion is due to the fact that this criterion compares each observation (y) to the

average of the other observations. A bin that contains a > 0 cases with yi = 1 and

b > 0 cases with yi = 0 has an average y of a
a+b
. But when an observation yi = 1 is

taken out, it is compared to the average of the remaining ones, a−1
a+b−1 <

a
a+b
, and vice

versa for yi = 0 (which is compared to a
a+b−1 >

a
a+b
). In both cases, the squared error

in the leave-one-out computation decreases in the size of the bin because the larger

the bin, the smaller the impact of taking out a single observation on the average of

the remaining ones.

The above suggests that in appropriately-defined “large”databases the curse of

dimensionality would be less severe and adding variables to the set of predictors would

be easier than in smaller databases. To make this comparison meaningful, and control

for other differences between the databases, we can compare a given database with

“replications”thereof, where the counters a and b above are replaced by ta and tb for

some t > 1. Formally, we will use the following definition.

Definition 1 Given two databases B = {(xi, yi)}i≤n and B′ = {(x′k, y′k)}k≤tn (for
t ≥ 1), we say that B′ is a t-replica of B if, for every k ≤ tn, (x′k, y

′
k) = (xi, yi) where

i = k(modn).

12Notice that this cannot happen with other statistical techniques such as linear regression.

11



Consider a database B′ which is a t-replica of the database in Example 1. It can

readily be verified that

MSE (∅) =

(
2t

4t− 1

)2
<

(
t

2t− 1

)2
= MSE ({1}) .

Indeed, the dramatic difference of theMSE’s in Example 1 ([MSE ({1})−MSE (∅)])

is smaller for larger t’s, and converges to 0 as t → ∞. However, it is still positive.
This suggests that there is something special about Example 1 beyond the size of

the database. Indeed, the variable in question, x1, is completely uninformative: the

distribution of y is precisely the same in each bin (i.e., for x1 = 0 and for x1 = 1), and

thus there is little wonder that splitting the database into these two bins can only

result in larger errors due to the smaller bin sizes, with no added explanatory power

to offset it. Formally, we define informativeness of a variable (for the prediction of y

in a database B) relative to a set of other variables as a binary property:

Definition 2 A variable j ∈ M is informative relative to a subset J ⊆ M\ {j} in
database B = {(xi, yi)}i≤n if there exists z ∈ {0, 1}J such that |b (J, z · 0)| , |b (J, z · 1)| >
0 and

y(J ·j,z·0) 6= y(J ·j,z·1).

In other words, a variable xj is informative for a subset of the variables, J , if, for

at least one assignment of values to these variables, the relative frequency of y = 1 in

the bin defined by these values and xj = 1 and the relative frequency defined by the

same values and xj = 0 are different.

One reason that a variable j may be uninformative relative to a set of other

variables is that it can be completely determined by them. Formally,

Definition 3 A variable j ∈ M is a function of J ⊆ M\ {j} in database B =

{(xi, yi)}i≤n if there is a function f : {0, 1}J → {0, 1} such that, for all i ≤ n,

xji = f
((
xki
)
k∈J

)
.

If j is a function of J , the bins defined by J and by J∪{j} are identical, and clearly
j cannot be informative relative to J . However, as we saw above, a variable j may fail

to be informative relative to J also if it isn’t a function of J . To determine whether

j is a function of J we need not consult the y values. Informativeness, by contrast, is

conceptually akin to correlation of the variable xj with y given the variables in J .
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We can finally state conditions under which more variables are guaranteed to

result in a lower MSE. Intuitively, we want to start by adding a variable that is

informative (relative to those already in use), and to make sure that the database

isn’t split into too small bins. Formally,

Proposition 1 Assume that j is informative relative to J ⊆M\ {j} in the database
B = {(xi, yi)}i≤n. Then there exists a T ≥ 1 such that, for all t ≥ T , for a t-replica of

B,MSE (J ∪ {j}) < MSE (J). Conversely, if j is not informative relative to J , then

for any t-replica of B, MSE (J ∪ {j}) ≥ MSE (J), with a strict inequality unless j

is a function of J .

We note in passing that informativeness of a variable does not satisfy monotonicity

with respect to set inclusion:

Observation 1 Let there be given a database B = {(xi, yi)}i≤n, a variable j ∈ M ,
and two subsets J ⊆ J ′ ⊆ M\ {j}. It is possible that j is informative for J , but not
for J ′ as well as vice versa.

2.4 Uniqueness

We have seen in section 2.3 that monotonicity of theMSE is not generally guaranteed.

Immediate implications are that the best fit is not necessarily achieved by a unique

subset of variables J , and in particular that it is not necessarily achieved by the

full set of all available predictors (J = M). For concreteness, consider the following

database

Example 2 Let n = 12 and m = 2. Consider the following database and the corre-

sponding MSE’s of the subsets of the variables:

i x1i x2i yi

1 1 0 0

2 1 0 1

3 0 1 0

4 0 1 1

5-8 0 0 0

9-12 1 1 1

J MSE (J)

∅ 0.2975

{1} 0.2

{2} 0.2

{1, 2} 0.3333
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Thus, the set of variables that minimize the MSE and the AMSE need not

be unique.13 Observe that the different similarity functions will also differ in their

predictions, both in-sample and certainly also out-of-sample. To see that, let us

begin with the prediction for observations i = 1, 2. In these, x1i = 1 and x2i = 0.

The similarity function sJ that corresponds to J = {1} yields an estimated y value
of ysJi = 0.8 whereas the similarity sJ ′ for J ′ = {2} yields ysJ′i = 0.2. Thus, even

though the two similarity functions obtain the same MSE, and this is the minimal

one over all such functions, their predictions for 4 out of the 12 observations in the

sample are very different. Clearly, two such functions can also disagree over the

predictions out of sample. In fact, they can disagree on out of sample observations

even if they fully agree in sample, for example, if in the sample two variables have the

same informational content. Specifically, if in the sample x1 = x2, for any c > 0 the

optimal similarity function will not include both variables. Assume that it includes

one of them. Then there are at least two similarity functions that minimize theMSE

and that are indistinguishable over all the observations in the sample. Yet, if a new

observations would have x1p 6= x2p, these two functions might well disagree.

This raises the issue of when can we reasonably expect rational agents faced with

the same prediction problem to adopt the same empirical similarity. In this section,

we derive two results that characterize suffi cient conditions for the two possible cases.

Proposition 2 identifies a class of prediction problems for which including all avail-

able predictors in the similarity function does indeed minimize the MSE, hence the

AMSE too as long as the cost c is suffi ciently small. At the other extreme, Proposi-

tion 3 identifies a class of prediction problems for which at least two disjoint subsets

of variables minimize MSE and AMSE. The comparison between the conditions

in Propositions 2 and 3 sheds light on features of a prediction problem that make

agreement among rational agents more or less likely to occur.

Let us first consider data generating processes that are conducive to the inclusion

of all variables in the empirical similarity. Assume that the values of the predictors,

(xi) are i.i.d. with a joint distribution g on X, and that yi = f (xi) for a fixed

f : X → {0, 1}.14 Let us refer to this data generating process as (g, f). We introduce

the following definition, then present our result:

13In this example we only compute the MSE, and the minimizers are the two singletons. Clearly,
for a small enough c these two subsets are also the minimizers of the AMSE.
14One may consider more general cases in which y is random, and P ( yi = 1 |xi ) = f (xi) for

some f : X → [0, 1]. In this case one can prove results that are similar to Proposition 4 below.
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Definition 4 A variable j ∈ M is informative for (g, f) if there are values z−j =(
zk
)
k 6=j such that (i) f (z−j · 0) 6= f (z−j · 1); and (ii) g (z−j · 0) , g (z−j · 1) > 0, where

z · q ∈ X is the vector obtained by augmenting z−jwith zj = q for q ∈ {0, 1}.

Proposition 2 Assume a data generating process (g, f) where all j ∈ M are infor-

mative for (g, f). Then there exists c̄ > 0 such that, for all c ∈ (0, c̄),

P

(
arg min

J⊆M
AMSE (J, c) = {M}

)
→n→∞ 1

The proposition thus says that, if there is an underlying relationship so that the

distribution of yi is a function of xi, but xi alone, and this function remains constant

for all observations, then, with a large enough database (i.e. fixing m and allowing n

to grow) the only set of predictors that minimize the AMSE is the set of all predictors

—unless some of them are not informative.

By contrast, let us now consider the other extreme case, where n is fixed and m

is allowed to grow. In this case, under fairly general probabilistic assumptions, we

find the opposite conclusion, namely that non-uniqueness is the rule rather than the

exception. Formally, fix n and (letting m grow) assume that for each new variable j,

and for every i ≤ n,

P
(
xji = 1

∣∣xlk, l < j or (l = j, k < i)
)
∈ (η, 1− η)

for a fixed η ∈ (0, 0.5). That is, we consider a rather general joint distribution of

the variables xj =
(
xji
)
i≤n, with the only constraint that the probability of the next

observed value, xji , being 1 or 0, conditional on all past observed values, is uniformly

bounded away from 0, where “past”is read to mean “an observation of a lower-index

variable or an earlier observation of the same variable”. For such a process we can

state:

Proposition 3 For every n ≥ 4, every c ≥ 0, and every η ∈ (0, 0.5), if there are at

least two cases with yi = 1 and at least two with yi = 0, then

P

(
∃J, J ′ ∈ arg minJ⊆M AMSE (J, c) ,

J ∩ J ′ = ∅

)
→m→∞ 1
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Proposition 2 can be viewed as dealing with a classical scientific problem, where

the set of relevant variables is limited, and many observations are available, perhaps

even by active experimentation. In this case we would expect that all informative

variables would be used in the optimal similarity function (if the fixed cost per variable

is suffi ciently low). Thus the set of optimal functions will be a singleton, defined by

the setM , and, in particular, different people who study the same database are likely

to converge on the same similarity function and therefore on the same predictions for

any new data point xp. By contrast, Proposition 3 deals with cases that are more

challenging to scientific study: the number of observations is fixed —which suggests

that active experimentation is ruled out —and also considered to be small relative to

the number of predictors that may be deemed relevant. The data generating process

in Proposition 3 can be viewed as a model of a process in which people come up

with additional possible predictors for a given set of cases. For example, presidential

elections and revolutions have a number of relevant cases that is more or less fixed,

but these cases can be viewed from new angles, by introducing new variables that

might be pertinent. The Proposition suggests that, when more and more variables

are considered, we should not be surprised if completely different (that is, disjoint)

sets of variables are considered “best”, and, as a result, different people may entertain

different beliefs about future observations based on the same data.

2.5 Complexity

Examples in which different sets of variables obtain precisely the same, minimal

AMSE might be knife-edge, hence disagreement might appear to be unlikely to occur

in practice. In this section, we present a second reason why rational agents faced with

the same prediction problem might adopt different similarity functions and disagree

in their predictions. As the number of possible predictors in a database grows, so does

the complexity of finding the optimal set of variables, even if it is unique. Formally,

we define the following problem:

Problem 1 EMPIRICAL-SIMILARITY: Given integers m,n ≥ 1, a database B =

{(xi, yi)}i≤n, and (rational) numbers c, R ≥ 0, is there a set J ⊆M ≡ {1, ...,m} such
that AMSE(J, c) ≤ R?

Thus, EMPIRICAL-SIMILARITY is the yes/no version of the optimization prob-

lem, “Find the empirical similarity for database B and constant c”. We can now
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state

Theorem 1 EMPIRICAL-SIMILARITY is NPC.

It follows that, when many possible variables exist, we should not assume that

people can find an (or the) empirical similarity. That is, it isn’t only the case that

there are 2m different subsets of variables, and therefore as many possible similarity

functions to consider. There is no known algorithm that can find the optimal simi-

larity in polynomial time, and it seems safe to conjecture that none would be found

in the near future.15 Clearly, the practical import of this complexity result depends

crucially on the number of variables, m.16 For example, if m = 2 and there are only 4

subsets of variables to consider, it makes sense to assume that people find the “best”

one. Moreover, if n is large, the best one may well be all the informative variables.17

3 A Continuous Model

One can extend the model to deal with continuous variables, allowing the predictors

(x1, ..., xm) to assume values (jointly) in a set X ⊆ Rm while the predicted variable,
y, — in a set Y ⊆ R. It is natural to use the same formulae of similarity-weighted
average used for the binary case, i.e.,

ysp =

∑
i≤n s(xi, xp)yi∑
i≤n s(xi, xp)

(5)

this time interpreted as the predicted value of y (rather than the estimation of the

probability that it be 1). This formula was axiomatized in Gilboa, Lieberman, and

Schmeidler (2006).18 In case s(xi, xp) = 0 for all i ≤ n, we set ysp = y0 for an arbitrary

15This result is the equivalent of the main result in Aragones et al. (2005) for regression analysis.
Thus, both in rule-based models and in case-based models of reasoning, it is a hard problem to find
a small set of predictors that explain the data well.
16Indirectly, it also depends on n. If n is bounded, there can be only a bounded number (2n) of

different variable values, and additional ones need not be considered.
17If we restrict EMPIRICAL-SIMILARITY to accept problems with a bounded m, say, m ≤ m0,

then it obviously becomes polynomial (in n, involving coeffi cients of the order of magnitude of 2m).
18If Y is discrete, we may also define the predicted value of yp by

ŷsp ∈ arg max
y

∑
i≤n

s(xi, xp)1{y=yi} (6)
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value y0 ∈ Y .19

For many purposes it makes sense to consider more general similarity functions,

that would allow for values in the entire interval [0, 1] and would not divide the

database into neatly separated bins. In particular, Billot, Gilboa, and Schmeidler

(2008) characterize similarity functions of the form

s (x, x′) = e−n(x,x
′)

where n is a norm on Rm. Indeed, this functional form is often used in explaining

psychological data about classification problems.20 Gilboa, Lieberman, and Schmei-

dler (2006) and Gayer, Gilboa, Lieberman (2007) also study the case of a weighted

Euclidean distance, where

sw (x, x′) = exp

(
−

m∑
j=1

wj
(
xj − x′j

)2)
(7)

with wj ≥ 0.21

We will use the extended non-negative reals, R+ ∪ {∞} = [0,∞], allowing for the

value wj =∞. Setting wj to∞ would be understood to imply sw (x, x′) = 0 whenever

xj 6= x′j, but if xj = x′j, the j-th summand in (7) will be taken to be zero. In other

words, we allow for the value wj = ∞ with the convention that ∞ · 0 = 0. This

would make the binary model a special case of the current one. (Setting wj = ∞
in (7) where wj = 1 in (2).) For the computational model, the value ∞ will be

considered an extended rational number, denoted by a special character (say “∞”).
The computation of sw (x, x′) first goes through all j ≤ m, checking if there is one for

which xj 6= x′j and wj =∞. If this is the case, we set sw (x, x′) = 0. Otherwise, the

which is equivalent to kernel classification and has been axiomatized in Gilboa and Schmeidler
(2003).
19We choose some value y0 only to make the expression ȳsp well-defined. Its choice will have no

effect on our analysis.
20Shepard (1987) suggests that a similarity function which is exponential in distance (in a “psy-

chological space”) might be a universal law. See Nosofsky (2014) for a more recent survey. Note,
however, that the similarity function in that literature is mostly for a classification task, rather than
for probability estimation.
21If one further assumes that there is a similarity-based data generating process driven by a

function as the above, one may test hypotheses about the values of the weights wj . See Lieberman
(2010, 2012), and Lieberman and Phillips (2014, 2017). In most of these results the exponential
function is assumed, though some results hold more generally.
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computation proceeds with (7) where the summation is taken over all j’s such that

wj <∞.
The definition of the empirical similarity extends to this case almost verbatim: the

MSE is defined in the same way, and one can consider similarity functions given by

(7) for some non-negative (wj)j≤m. Rather than thinking of MSE (s) as a function

of a set of predictors, J ⊆ M , denoted MSE (J) as above, one would consider it as

a function of a vector of weights, w = (wj)j≤m, denoted MSE (w). We will similarly

define the adjusted MSE by

AMSE(w, c) ≡MSE(w) + c|J (w) |

where

J (w) =
{
j ≤ m

∣∣wj > 0
}
.

That is, a positive weight on a variable incurs a fixed cost. This cost can be thought of

as the cost of obtaining the data about the variable in question, as well as the cognitive

cost associated with retaining this data in memory and using it in calculations.

However, when we think of an empirical similarity as a function sw that minimizes

the AMSE, we should bear in mind the following.

Observation 2 There are databases for which

arg min
w∈[0,∞]m

MSE (w) = ∅.

(This Observation is proved in the Appendix.) The reason that the argmin of the

MSE may be empty is that the MSE is well-defined at wj = ∞ but need not be

continuous there. We will therefore be interested in vectors w that obtain the lowest

MSE approximately.

We can define approximately optimal similarity: for ε > 0 let

ε- arg minAMSE =
{
w ∈ [0,∞]m

∣∣∣AMSE (w, c) ≤ inf
w′
AMSE (w′, c) + ε

}
Thus, the ε-arg minAMSE is the set of weight vectors that are ε-optimal. We are

interested in the shape of this set for small ε > 0.
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3.1 Agreement

We argue that the main messages of our results in the binary case carry over to

this model as well. Again, the key questions are the relative sizes of n and m, and

the potential causal relationships between observations: when there are n >> m

independent observations that obey a functional rule y = f (x) —which, in particular,

implies that xi contains enough information to predict yi —the optimal weights will be

unique, and different people are likely to converge to the same opinion. By contrast,

whenm >> n, it is likely that different sets of variable will explain the same (relatively

small) set of observations.

Let us first consider the counterpart of (g, f) processes, where the observations

(xi, yi) are i.i.d. For simplicity, assume that each x
j
i and each yi is in the bounded

interval [−K,K] for K > 0. Let g be the joint density of x, with g (z) ≥ η > 0

for all x ∈ X ≡ [−K,K]mand let a continuous f : X → [−K,K] be the underlying

functional relationship between x and y so that22

yi = f (xi) .

Refer to this data generating process as (g, f).

Proposition 4 Assume a data generating process (g, f) (where f is continuous). Let

there be given ν, ξ > 0. There are an integer N0 and W0 ≥ 0 such that for every

n ≥ N0, the vector w0 defined by w
j
0 = W0 satisfies

P (MSE (w0) < ν) ≥ 1− ξ.

The proposition says that, if there is an underlying relationship so that yi is a

continuous function of xi, and this function remains constant for all observations,

then, when the database is large enough, with very high probability, this relationship

can be uncovered. This is a variation on known results about convergence of kernel

estimation techniques (see Nadaraya, 1964, Watson, 1964) and it is stated and proved

here only for the sake of completeness.23

22Similar conclusion would follow if we allow yi to be distributed around f (xi) with an i.i.d. error
term.
23We are unaware of a statement of a result that directly implies this one, though there are many

results about optimal bandwidth that are similar in spirit.
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We take Proposition 4 as suggesting that, under the assumption of the (g, f)

process, different individuals are likely to converge to similar beliefs about the value

of yp for a new case given by xp within the known range. The exact similarity function

that different people may choose may not always be identical. For example, if x1i = x2i

for every observation in the database, one function sw may obtain a near-perfect fit

with w1 >> 0 and w2 = 0 and another, sw
′
, — with w′1 = 0 and w′2 >> 0. If

one individual uses sw to make predictions, and another — sw
′
, they will agree on

the predicted values for all x that are similar to those they have encountered in the

database. In a sense, they may agree on the conclusion but not on the reasoning. But,

as long as they observe cases in which x1 = x2, they will not have major disagreements

about any particular prediction.

However, we also have a counterpart of Proposition 3: given n,m, assume that

for each i ≤ n, yi is drawn, given (yk)k<i, from a continuous distribution on [−K,K]

with a continuous density function hi bounded below by η > 0. Let v be a lower

bound on the conditional variance of yi (given its predecessors). Next assume that,

for every j ≤ m and i ≤ n, given (yi)i≤n,
(
xli
)
i≤n,l<j, and

(
xji
)
k<i
, xji is drawn from

a continuous distribution on [−K,K] with a continuous conditional density function

gji bounded below by η > 0. Thus, as in Proposition 3, we allow for a rather general

class of data generating processes, where, in particular, the x’s are not constrained to

be independent.24 The message of the following result is that the empirical similarity

is non-unique.

For such a process we can state:

Proposition 5 Let there be given c ∈ (0, v/2). There exists ε̄ > 0 such that for all

ε ∈ (0, ε̄) and for every δ > 0 there exists N such that for every n ≥ N there exists

M (n) such that for every m ≥M (n),

P (ε- arg minAMSE is not connected) ≥ 1− δ.

The fact that the ε-arg minAMSE is not a singleton is hardly surprising, as we

allow the AMSE to be ε-away from its minimal value. However, one could expect

this set to be convex, as would be the case if we were considering the minimization

of a convex function. This convexity would also suggest a simple follow-the-gradient

24The assumption of independence of the yi’s is only used to guarantee that each observation yi
has suffi ciently close other observations, and it can therefore be significantly relaxed.
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algorithm to find a global minimum of the AMSE function. But the Proposition

states that this is not the case. For ε = 0 we could expect ε-arg minAMSE to be

a singleton (hence a convex set), but as soon as ε > 0 we will find that there are

ε-minimizers of the AMSE whose convex combinations need not be ε-minimizers.

Clearly, this is possible because our result is asymptotic: given ε we let n, and

then m ≥ M (n) go to infinity. But we find the present order of quantifiers to be

natural: ε indicates a degree of tolerance to suboptimality, and it can be viewed as a

psychological feature of the agent, as can the cost c. The pair (ε, c) can be considered

as determining the agent’s preferences for the accuracy and simplicity trade-off. An

agent with given preferences is confronted with a database, and we ask whether her

“best”explanation of the database be unique as more data accumulate. Proposition

5 suggests that multiplicity of local optima of the similarity function is the rule when

the number of variables is allowed to increase relative to that of the observations.

3.2 Complexity

Importantly, our complexity result extends to the continuous case. Formally,

Problem 2 CONTINUOUS-EMPIRICAL-SIMILARITY: Given integers m,n ≥ 1,

a database of rational valued observations, B = {(xi, yi)}i≤n, and (rational) numbers
c, R ≥ 0, is there a vector of extended rational non-negative numbers w such that

AMSE(w, c) ≤ R?

And we can state

Theorem 2 CONTINUOUS-EMPIRICAL-SIMILARITY is NPC.

As will be clear from the proof of this result, the key assumption that drives the

combinatorial complexity is not that x, y or even w are binary. Rather, it is that

there is a fixed cost associated with including an additional variable in the similarity

function. That is, that the AMSE is discontinuous at wj = 0.2526

25To see that this complexity result does not hinge on specific values of the variables xji and each
yi, one may prove an analogous result for a problem in which positive-length ranges of values are
given for these variables, where the question is whether a certain AMSE can be obtained for some
values in these ranges.
26See also Eilat (2007), who finds that the fixed cost for including a variable is the main driving

force behind the complexity of finding an optimal set of predictors in a regression problem (as in
Aragones et al., 2005).
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To conclude, it appears that the qualitative conclusion, namely that people may

have the same database of cases yet come up with different “empirical similarity”

functions to explain it, would hold also in a continuous model.

4 Discussion

4.1 Learnability

Our analysis seems to suggest that some processes are inherently learnable, and some

aren’t. In both models we find that, if y is a function of x = (xj)j≤m and m is not

too large, whereas the number n of i.i.d. observations can grow at will, then the

functional relationship can be learnt. As a by-product, this learning will result in

different agents coming up with the same beliefs and predictions. By contrast, if n

is limited and m can be relatively large, there is no basic process that can be learnt,

and different people may end up with different opinions.

There are two distinctions between the extreme cases discussed above: first, the

relative sizes of n and m. Secondly, the assumption that the observations are i.i.d.

draws from a basic functional relationship between y and x. When we compare

prediction in the insurance and in the revolution problems, the two distinctions are

extreme: (i) in the insurance problem one can think of many cases (large n) for a

limited set of predictors (small m), whereas the opposite holds when dealing with

revolutions; (ii) in the insurance problem causal independence across observations is

a reasonable working assumption, while it does not appear to be valid in studying

revolutions.

We observe that these two distinctions are intertwined: in case consecutive ob-

servations are causally related, one may introduce the relevant part of a problem’s

history as part of the predictors (as is done in autoregression models). For example,

if we believe that the financial crisis of 1929 and the ensuing Great Depression had a

causal effect on the way that the financial crisis of 2007/8 was handled, we can intro-

duce a predictor “post-1929”, and expect it to be a suffi cient statistic for history, as it

were. Thus, causal relationships between consecutive observations can, in principle,

be reduced to the question of the relative sizes of m and n.

Our discussion is silent on the question of experimentation. We provide results

about learnable processes where the observations are i.i.d., with a given distribution
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of the predictors. In the classical view of scientific inquiry, however, the predictors

are not randomly drawn; rather, researchers may design controlled experiments and

choose values of x so as to study causal mechanisms. One can therefore distinguish

among three types of set-ups:

(i) There exists a basic functional relationship, y = f (x), where one may obtain

observations of y for any x one chooses to experiment with;

(ii) There exists a basic functional relationship, y = f (x), and one may obtain

i.i.d. observations (x, y), but can’t control the observed x’s;

(iii) There is no bounded set of variables x such that yi depends only on xi,

independently of past values.

Set-up (i) is the gold standard of scientific studies. It allows testing hypotheses,

distinguishing among competing theories and so forth. However, many problems in

fields such as education or medicine are closer to set-up (ii). In these problems one

cannot always run controlled experiments, be it due to the cost of the experiments,

their duration, or the ethical problems involved. Still, standard results in statistics,

of which Propositions 2 and 4 are examples, suggest that learning is still possible: the

values of the function f would be predicted with high accuracy for all the x’s that

one normally observed. Some variables may not be identifiable, so that prediction for

yet-unobserved variable value combinations may leave room for disagreement. But,

as long as the observations are drawn from the same distribution, agreement about

them is likely to be the rule. Finally, there are problems that are closer to set-up

(iii). The rise and fall of economic empires, the ebb and flow of religious sentiments,

social norms and ideologies are all phenomena that affect economic predictions, yet do

not belong to problems of types (i) or (ii). In these types of problems, disagreement

among rational agents need not be anomalous.

4.2 Higher-Order Induction Processes

Second-order processes raise questions about yet higher order processes of the same

nature, and the possibility of infinite regress. The question then arises, why do we

focus on second-order induction and do not climb up the hierarchy of higher-order

inductive processes? Higher order induction can indeed be defined in the context of

our model. Our notion of second-order induction consists of learning the similarity

function from the database of observation. One may well ask, could this learning
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process be improved upon? For example, we have been using a leave-one-out tech-

nique. But the literature suggests also other methods, such as k-fold cross-validation,

in which approximately 1/k of the database is taken out each time, and their y values

are estimated by the remaining observations. One can consider, for a given data-

base, the choice of an optimal k, or compare these methods to bootstrap methods

(see, for instance, Kohavi, 1995). Similarly, kernel methods can be compared to

nearest-neighbor methods (Fix and Hodges, 1951, 1952). In short, the process we

assume in this paper, of second-order induction, can itself be learnt by what might be

called third-order induction, and an infinite regress can be imagined. Isn’t restricting

attention to second-order induction somewhat arbitrary? Is it a result of bounded

rationality?

A few comments are in order. First, in some types of applications lower orders may

provide good approximations. For example, suppose that it is indeed the case that

y = f (x) as in Propositions 2 and 4. Zero-order induction may refer to the assumption

that there is nothing to be learnt from the past about the future, or, at least, that

the x variables contain no relevant information. This would surely lead to poor

predictions as compared to the learnable process (y = f (x)). First-order induction

would be using a fixed similarity function to predict y based on its past values. This

would provide much better estimates, though also systematic biases (in particular,

near the boundaries of the domain of x). Thus, second-order induction is needed,

which, in particular, leads to higher weights, and “tighter” similarity functions for

large n. This is basically the message of Propositions 2 and 4: similarly to decreasing

the bandwidth of the Nadaraya-Watson estimator when n increases, computing the

empirical similarity leads (with very high probability) to convergence of the estimator

to yp = f (xp). Third-order induction could improve these results, say, by making

the rate of convergence faster. But it is not needed for the conceptual message of

Propositions 2 and 4, and, importantly, of Propositions 3 and 5: for a small m and

increasing n we can expect learning to occur, and agreement to result, whereas neither

is guaranteed whenm is large relative to n. Thus, the marginal contribution of higher

orders of induction, in terms of the conceptual import of our results, seems limited.

Second, our model can also be applied to strategic set-ups, such as equilibrium

selection in coordination games. In these set-ups the data generating process is partly,

or mostly about the reasoning of other agents, and being even one level behind the

others may have a big effect of the accuracy of one’s predictions, as well as on one’s
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payoff. However, in such a game any reasoning method can be an equilibrium in

the “meta-game”, in which players select a reasoning method and then use it for

predicting others’behavior. For example, players might adopt zero-order induction,

assume that the past is completely irrelevant and make random selections at each

period. Thus, zero-order induction can be an equilibrium of the meta-game. Similarly,

first-order induction may be the selected equilibrium (as in Steiner and Stewart, 2008,

Argenziano and Gilboa, 2012). Viewed thus, we suggest that second-order induction

is a natural candidate for a focal point in the reasoning (meta-)game. Assuming that

people do engage in this process in non-strategic set-ups, where it might lead to good

predictions (as suggested by Propositions 2 and 4), we propose that in a strategic

set-up second-order induction may be the equilibrium players coordinate on. Clearly,

this is an empirical claim that needs to be tested. However, stopping at second-order

induction doesn’t not involve any assumption bounded rationality; it is only a specific

theory of focal points in the reasoning game.

Lastly, we point out that higher orders of induction may generate identification

problems: since the agents in our model are assumed to learn parameters (as the

parameters of the similarity function in second-order induction), one should be con-

cerned about higher orders of induction increasing the number of parameters. Surely,

it is possible that third- or even fourth-order induction would be identifiable and

generate better predictions. But an infinite regress is likely to generate a model that

cannot be estimated from the finite database, and the optimal choice of the order

of induction in the model may follow considerations such as the Akaike Information

Criterion (Akaike, 1974).

4.3 Compatibility with Bayesianism

There are several ways in which the learning process we study can relate to the

Bayesian approach. First, as discussed in the Introduction, one may consider our

model as describing the generation of prior beliefs, along the lines of the “small world”

interpretation of the state space (as in Savage, 1954, section 5.5). In the examples

discussed above this “prior”would be summarized by a single probability number, and

there wouldn’t be any opportunity to perform Bayesian updating. One may develop

slightly more elaborate models, in which each case would involve a few stages (say,

demonstrations, reaction by the regime, siege of parliament...) and use past cases to
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define a prior on the multi-stage space, which can be updated after some stages have

been observed. Our approach is compatible with this version of Bayesianism, where

the similarity-based relative frequencies using the empirical similarity is a method of

generating a prior belief over the state space.

Alternatively, one can adopt a “large world” or “grand state space” approach,

in which a state of the world resolves any uncertainty from the beginning of time.

Savage (1954) suggests to think of a single decision problem in one’s life, as if one

were choosing a single act (strategy) upon one’s birth. Thus, the newborn baby

would need to have a prior over all she may encounter in her lifetime. For many

applications one may need to consider historical cases, and thus the prior should be

the hypothetical one the decision maker would have had, had she been born years

back. The assumption that newborn entertain a prior probability over the entire

paths their lives would take is a bit fanciful. Further, the assumption that they

would have such a prior even before they could make any decisions conflicts with

the presumably-behavioral foundations of subjective probability. Yet, this approach

is compatible with the process we describe: in the language of such a model, ours

can be described as agents having a high prior probability that the data generating

process would follow the empirical similarity function. In the context of a game (such

as a revolution), this would imply that they expect other players’beliefs to follow a

similar process.

There are ways of implementing the Bayesian approach that are in between the

small world and the large world interpretation, and these are unlikely to be compatible

with our model. For example, assume that an agent believes that the successes of

revolutions generates a (conditionally) i.i.d. sequence of Bernoulli random variables,

with an unknown parameter p. As a Bayesian statistician, she has a prior probability

over p, and she observes past realizations in order to infer what p is likely to be. This

Bayesian updating of the prior over p to a posterior has no reason to resemble our

process of learning the similarity function.

In this paper we focus on probabilistic beliefs, or point estimates of the variable y

given the x’s. In case of uniqueness of the similarity function, or at least agreement

among all the empirical similarity functions, one may consider these estimates to be

objective, and proceed to assume that all rational agents would share them. But in

case of disagreement, one may ask whether it is rational for the agents to disagree.

For example, if there are multiple similarity functions that obtain a best fit, is it
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rational for an agent to choose one and based her predictions on that function alone?

Wouldn’t it more rational for her, assuming unbounded computational ability, to find

all optimal functions and somehow take them into account in her predictions? These

are valid questions which are beyond the scope of this paper.

4.4 Cases and Rules

As mentioned above, one can assume that people use rule-based, rather than case-

based reasoning, and couch the discussion in the language of rules. Rules are naturally

learnt from the data by a process of abduction (or case-to-rule induction), which can

also be viewed as a type of second-order induction.

While the two modes of reasoning can sometimes be used to explain similar phe-

nomena, they are in general quite different. First, sets of rules may be inconsistent,

whereas this is not a concern for databases of cases. Second, association rules such

as “if xi belongs to a set..., then yi is...”do not have a bite where their antecedent is

false. Finally, association rules, which are natural for deterministic predictions, need

to be augmented in order to generate probabilities.

We find case-based reasoning to be simpler for our purposes. Cases never contra-

dict each other; their similarity-weighted relative frequency always defines a probabil-

ity; and, importantly, they are a minimal generalization of simple relative frequencies

that used to define objective probabilities. However, additional insights can be ob-

tained from more general models that combine case-based and rule-based reasoning,

with second-order induction processes that learn the similarity of cases as well as the

applicability and accuracy of rules.
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5 Appendix A: Proofs

Proof of Proposition 1:
Assume first that j ∈M is informative relative to J ⊆M\ {j} inB = {(xi, yi)}i≤n.

Let z ∈ {0, 1}J be such that |b (J, z · 0)| , |b (J, z · 1)| > 0 and

y(J ·j,z·0) 6= y(J ·j,z·1)

Assume that B′ is a t-replica of B. The main point of the proof is that, for

large enough t, the MSE of a given subset of variables, L, could be approximated

by a corresponding expression in which y(L,z)i (computed for the bin in which i was

omitted) is replaced by y(L,z) (computed for the bin without omissions), and then

to use standard analysis of variance calculation to show that the introduction of an

informative variable can only reduce the sum of squared errors.

Formally, let bt(L, z′) denote the L-z′ bin in B′ (so that |bt (L, z′)| = t |b (L, z′)|).
Recall that

MSE (L) =
1

n

∑
z′∈{0,1}L

∑
i∈bt(L,z′)

(
y
(L,z′)
i − yi

)2
and define

MSE ′ (L) =
1

n

∑
z′∈{0,1}L

∑
i∈bt(L,z′)

(
y(L,z

′) − yi
)2
.

It is straightforward that y(L,z
′)

i − y(L,z′) = O
(
1
t

)
and

MSE (L)−MSE ′ (L) = O

(
1

t

)
. (8)

Let us now consider the given set of variables J and j ∈M\J that is informative
relative to J . For any z′ ∈ {0, 1}J we have

∑
i∈b(J,z′)

(
y(J,z

′) − yi
)2
≥

∑
i∈b(J,z′)

(
y(J ·j,z′·xji) − yi

)2
and for z (for which y(J ·j,z·0) 6= y(J ·j,z·1) is known),

∑
i∈b(J,z)

(
y(J,z) − yi

)2
>
∑

i∈b(J,z)

(
y(J ·j,z·xji) − yi

)2
+ c
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where c > 0 is a constant that does not depend on t. It follows that

MSE ′ (J ∪ {j}) ≤MSE ′ (J)− c′

where c′ = |b(J,z)|
n

c > 0 is independent of t. This, combined with (8), means that

MSE (J ∪ {j}) < MSE (J) holds for large enough t.

Conversely, if j is not informative relative to J , then it remains non-informative

for any t-replica of B. If j is a function of J , then the J bins and the J ∪ {j}-bins
are identical, with the same predictions and the same error terms in each, so that

MSE (J ∪ {j}) = MSE (J). Assume, then, that j is not informative relative to J

(for B and for any replica thereof), but that j isn’t a function of J . Thus, at least

one J-bin of B, and of each replica thereof, B′, is split into two J ∪ {j}-bins, but the
average values of y in any two such sub-bins are identical to each other. It is therefore

still true that MSE ′ (J ∪ {j}) = MSE ′ (J) because the sum of squared errors has

precisely the same error expressions in both sides. However, for every set of variables

L and every L-bin in which there are both yi = 1 and yi = 0, the error terms for

that bin inMSE (L) are higher than those inMSE ′ (L): the leave-one-out technique

approximates yi = 1 by y(L,z
′)

i < y(L,z
′) and yi = 0 by y(L,z

′)
i > y(L,z

′). Further the

difference
∣∣∣y(L,z′)i − y(L,z′)

∣∣∣ decreases monotonically in the bin size. Therefore, if at
least one J-bin is split into two J ∪ {j}-bins, we obtain MSE (J ∪ {j}) > MSE (J).

�

Proof of Observation 1:
Consider a database obtained by t > 1 replications of the following (n = 4t,

m = 3):
i x1i x2i x3i yi

1 0 0 1 1

2 0 1 1 0

3 1 0 0 0

4 1 1 0 1

Clearly, y is a function of (x1, x2). In fact, it is the exclusive-or function, that is

y = 1 iff x1 = x2. Neither 1 nor 2 is informative relative to ∅, but each is informative
relative to the other. (Thus, for J ≡ ∅ ⊆ J ′ ≡ {2}, j = 1 is informative relative to

J ′ but not relative to J .) However, 1 is not informative relative to J ′′ = {2, 3} (while
it is relative to its subset J ′).
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To see that the latter can happen also when the variable in question isn’t a function

of the other ones, consider the following example. Consider n = 15,m = 2:

i x1i x2i yi

1 0 0 0

2 0 0 1

3-6 0 1 0

7-8 0 1 1

9-10 1 0 0

11-12 1 0 1

13-14 1 1 0

15 1 1 1

It can be verified that x1 is informative relative to ∅ but not relative to {2}. �

Proof of Proposition 2:
Assume a data generating process (g, f) for which all j ∈M are informative. For

a given j ∈ M there exists z−j ∈ {0, 1}m−1 such that f (z−j · 0) 6= f (z−j · 1) (hence

[f (z−j · 0)− f (z−j · 1)]
2

= 1) and g (z−j · 0) , g (z−j · 1) > 0. Consider a proper sub-

set of predictors, J ( M , and let j /∈ J . Assume that n is large. Focus on an

observation i whose xi is in the bin defined by z−j · 0, and consider its estimated ȳi.
In the computation of the latter (according to J , which does not include j) there are

observations xk in the bin defined by z−j · 1, and they contribute 1 to the sum of

squared errors. Clearly, the opposite is true as well. Hence, focusing on these bins

alone we find a lower bound of the sum of squared errors
∑n

i=1 (ysi − yi)
2 that is of the

order of magnitude of 2ng (z−j · 0) g (z−j · 1). (We skip the standard approximation

argument as in the proof of Proposition 1.)

For large enough n, we can therefore conclude that with arbitrarily high proba-

bility we have

MSE (J)−MSE (J ∪ {j}) > g
(
z−j · 0

)
g
(
z−j · 1

)
for every J ⊆ M\ {j}. Observe that there are finitely many bins, and therefore, for
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a given δ > 0 one can find N such that for every n ≥ N

P

(
MSE (J)−MSE (J ∪ {j}) > g (z−j · 0) g (z−j · 1)

∀j ∈M,∀J ⊆M\ {j}

)
≥ 1− δ. (9)

We now turn to select a value c̄ > 0 that would be small enough so that the

reduction in the AMSE thanks to omitting a variable j would not be worth the

increase due to the error. For each j, let

dj = max
{
g
(
z−j · 0

)
g
(
z−j · 1

) ∣∣ z−j ∈ {0, 1}m−1 f
(
z−j · 0

)
6= f

(
z−j · 1

) }
and

d ≡ min
j∈M

dj.

Note that dj > 0 for all j (as each j is informative), and hence d > 0. Set c̄ = d/2.

Given δ > 0 let N be such that for every n ≥ N (9) holds. Let c ∈ (0, c̄). We know

thatMSE (M) = 0 andAMSE (M) = mc. By the choice of c̄, arg minJ⊆M AMSE (J, c) =

{M}. Hence for any δ > 0 there exists N such that for every n ≥ N

P

(
arg min

J⊆M
AMSE (J, c) = {M}

)
≥ 1− δ.

�

Proof of Proposition 3:
As there are at least two observations with the value of yi = 0 and at least two

with yi = 1, if there is a variable j such that xji = yi (or x
j
i = 1 − yi) for all i ≤ n,

the set J = {j} obtains MSE (J) = 0 (and AMSE (J) = c). We will show that the

proposition holds for J and J ′ that are (distinct) singletons.

Let the variables be generated according to the process described with 0 < η < 0.5.

Each xj has a probability of equalling y that is at least ηn. The probability it does not

provide a perfect fit is bounded above by (1− ηn) < 1 —which is a common bound

across all possible realizations of previously observed variables. The probability that

none of m such consecutively drawn variables provides a perfect fit is bounded above

by (1− ηn)m → 0 as m → ∞. Similarly if we consider m = 2k variables, and ask

what is the probability that there is at least one among the first k and at least one

among the second k such that each provides a perfect fit (xji = yi for all i) is at least

[1− (1− ηn)m]
2 → 1 as m→∞. �
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Proof of Theorem 1:
Clearly, EMPIRICAL-SIMILARITY is in NP. Given a set of variable indices,

J ⊆M ≡ {1, ...,m}, computing its AMSE takes no more than O (n2m) steps.

The proof is by reduction of the SET-COVER problem to EMPIRICAL-SIMILARITY.

The former, which is known to be NPC (see Garey and Johnson, 1979), is defined as

Problem 3 SET-COVER: Given a set P , r ≥ 1 subsets thereof, T1, ..., Tr ⊆ P , and

an integer k (1 ≤ k ≤ r), are there k of the subsets that cover P? (That is, are there

indices 1 ≤ i1 ≤ i2 ≤ ... ≤ ik ≤ r such that ∪j≤kTij = P?)

Given an instance of SET-COVER, we construct, in polynomial time, an instance

of EMPIRICAL-SIMILARITY such that the former has a set cover iff the latter has

a similarity function that obtains the desired AMSE. Let there be given P , r ≥ 1

subsets thereof, T1, ..., Tr ⊆ P , and an integer k. Assume without loss of generality

that P = {1, ..., p}, that ∪i≤rTi = P , and that zuv ∈ {0, 1} is the incidence matrix of
the subsets, that is, that for u ≤ p and v ≤ r, zuv = 1 iff u ∈ Tv.
Let n = 2 (p+ 1) and m = r. Define the database B = {(xi, yi)}i≤n as follows.

(In the database each observation is repeated twice to avoid bins of size 1.)

For u ≤ p define two observations, i = 2u− 1, 2u by

xji = zuj yi = 1

and add two more observations, i = 2p+ 1, 2p+ 2 defined by

xji = 0 yi = 0.

Next, choose c to be such that 0 < c < 1
mn3

, say, c = (mn3)
−1
/2 and R = kc. This

construction can obviously be done in polynomial time.

We claim that there is a cover of size k of P iff there is a similarity function defined

by a subset J ⊆ M ≡ {1, ...,m} such that AMSE(J, c) ≤ R. Let us begin with the

“only if” direction. Assume, then, that such a cover exists. Let J be the indices

1 ≤ i1 ≤ i2 ≤ ... ≤ ik ≤ r = m of the cover. For every i ≤ 2p, there exists j ∈ J such
that xji = 1 and thus i is not in the same bin as 2p+1, 2p+2. It follows that for every

i′ such that swJ (xi, xi′) = 1 we have yi′ = yi = 1 and thus y
swJ
i = 1 = yi. Similarly,

for i = 2p+ 1 and i′ = 2p+ 2 are similar only to each other and there we also obtain

perfect prediction: y
swJ
i = 0 = yi. To conclude, SSE (J) = MSE (J) = 0. Thus,
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AMSE(J, c) = MSE (J) + c |J | = ck = R.

Conversely, assume that J ⊆ M ≡ {1, ...,m} is such that AMSE(J, c) ≤ R.

We argue that we have to have SSE (J) = MSE (J) = 0. To see this, assume, to

the contrary, that J does not provide a perfect fit. Thus, there exists i such that

y
swJ
i 6= yi. As yi ∈ {0, 1} and y

swJ
i is a relative frequency in a bin of size no greater

than n, the error
∣∣yswJi − yi

∣∣ must be at least 1
n
. Therefore, SSE (J) ≥ 1

n2
and

MSE (J) ≥ 1
n3
. However, R = ck ≤ cm and as c < 1

mn3
as we have cm < 1

n3
. Hence

MSE (J) ≥ 1
n3
> cm ≥ R, that is, MSE (J) > R and AMSE(J, c) > R follows, a

contradiction.

It follows that, if J obtains a low enough AMSE (AMSE(J, c) ≤ R), it obtains a

perfect fit. This is possible only if within each J-bin the values of yi’s are constant.

In particular, the observations i = 2p+ 1 and i′ = 2p+ 2 (which, being identical are

obviously in the same bin) are not similar to any other. That is, for every i ≤ 2p we

must have swJ (xi, x2p+1) = 0. This, in turn, means that for every such i there is a

j ∈ J such that xji 6= xj2p+1. But x
j
2p+1 = 0 so this means that xji = 1. Hence, for

every u ≤ p there is a j ∈ J such that xj2u = zuj = 1, that is, {Tv}v∈J is a cover of P .
It only remains to note that AMSE(J, c) ≤ R implies that |J | ≤ k. �

Proof of Observation 2:
Assume that m = 1, n = 4 and

i xi yi

1 0 0

2 1 0

3 3 1

4 4 1

In this example observations 1, 2 are closer to each other than each is to any of

observations 3, 4 and vice verse. (That is, |xi − xj| = 1 for i = 1, j = 2 as well as

for i = 3, j = 4, but |xi − xj| ≥ 2 for i ≤ 2 < j.) Moreover the values of y are the

same for the “close”observations and different for “distant”ones. (That is, yi = yj

for i = 1, j = 2 as well as for i = 3, j = 4, but |yi − yj| = 1 for i ≤ 2 < j.) If we

choose a finite w, the estimated value for each i, ȳswi , is a weighted average of the two

distant observations and the single close one. In particular, for every w <∞ we have

MSE (w) > 0.
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Observe that w = w1 =∞ doesn’t provide a perfect fit either: if we set w = w1 =

∞, each observation i is considered to be dissimilar to any other, and its y value is
estimated to be the default value, ȳswi = y0. Regardless of the (arbitrary) choice of

y0, the MSE is bounded below by that obtained for y = 0.5 (which is the average y

in the entire database). Thus, MSE (∞) ≥ 0.25.

Thus, MSE (w) > 0 for all w ∈ [0,∞]. However, as w → ∞ (but w < ∞),
for each i the weight of the observation that is closest to i converges to 1 (and the

weights of the distant ones —to zero), so that ȳswi → yi. Hence, MSE (w)→w→∞ 0.

We thus conclude that infw∈[0,∞]MSE (w) = 0 but that there is no w that minimizes

the MSE. �

Proof of Proposition 4:
We wish to show that arbitrarily low values of the MSE can be obtained with

probability that is arbitrarily close to 1. Let there be given ν > 0 and ξ > 0. We wish

to find N0 and W0 such that for every n ≥ N0, the vector w0 defined by w
j
0 = W0

satisfies

P (MSE (w0) < ν) ≥ 1− ξ.

To this end, we first wish to define “proximity”of the x values that would guarantee

“proximity”of the y values. Suppose that the latter is defined by ν/2. As the function

f is continuous on a compact set, it is uniformly continuous. Hence, there exists θ > 0

such that, for any x, x′ that satisfy ‖x− x′‖ < θ we have [f (x)− f (x′)]2 < ν/2. Let

us divide the set X into (4K
√
m/θ)

m equi-volume cubes, each with an edge of length
θ

2
√
m
. Two points x, x′ that belong to the same cube differ by at most θ

2
√
m
in each

coordinate and thus satisfy ‖x− x′‖ < θ/2. Let us now choose N1 such that, with

probability of at least (1− ξ/2), each such cube contains at least two observations xi
(i ≤ N1). This guarantees that, when observation i is taken out of the sample, there

is another observation i′ (in the same cube), with [yi′ − f (xi)]
2 < ν/2.

Next, we wish to bound the probability mass of each cube (defined by g). The

volume of a cube is
(

θ
2
√
m

)m
and the density function is bounded from below by

η. Thus, the proportion of observations in the cube (out of all the n observations)

converges (as n→∞) to a number that is bounded from below by ζ ≡ η
(

θ
2
√
m

)m
> 0.

Choose N0 ≥ N1 such that, with probability of at least (1− ξ/2), for each n ≥ N0

the proportion of the observations in the cube is at least ζ/2. Note that this is a

positive number which is independent of n.
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Finally, we turn to choose W0. For each i, the proportion of observations xk with

[f (xi)− f (xk)]
2 > ν is bounded above by (1− ζ). Define w0 by w

j
0 = W0. Observe

that, as W0 →∞, ∑
k 6=i,[f(xi)−f(xk)]2>ν s(xi, xk)∑
k 6=i,[f(xi)−f(xk)]2≤ν s(xi, xk)

→ 0

and this convergence is uniform in n (as the definition of ζ is independent of n). Thus

a suffi ciently high W0 can be found so that, for all n ≥ N0, MSE (w0) < ν with

probability (1− ξ) or higher. �

Proof of Proposition 5:
The general idea of the proof is very similar to that of Proposition 3: non-

uniqueness is obtained by showing that two variables can each provide perfect fit

on their own. In the continuous case, however, to obtain perfect fit one needs a bit

more than in the binary case: in the latter, it was suffi cient to assume that there are

at least two observations with yi = 0 and two with yi = 1; in the continuous case we

need to make sure that each yi has a close enough yk. For this reason, we state and

prove the result for a large n; yet, M (n) will be larger still, so that we should think

of this case as m >> n.

We now turn to prove the result formally. It will be convenient to define, for

w ∈ [0,∞]m, supp(w) =
{
l ∈M

∣∣wl > 0
}
.

Let there be given c > 0. Choose ε̄ = c/3. We wish it to be the case that if

MSE (w) ≤ ε with #supp(w) = 1, then w ∈ ε-arg minAMSE, but for no w ∈
ε-arg minAMSE is it the case that #supp(w) > 1. Clearly, the choice ε̄ = c/3

guarantees that for every ε ∈ (0, ε̄), the second part of the claim holds: if a vector

w satisfies MSE (w) ≤ ε, no further reduction in the MSE can justify the cost of

additional variables, which is at least c. Conversely, because c < v/2 (the variance

of y), a single variable j that obtains a near-zero MSE would have a lower AMSE

than the empty set.

Let there now be given ε ∈ (0, ε̄) and every δ > 0. We need to find N and, for

every n ≥ N , M (n), such that for every n ≥ N and m ≥M (n),

P (ε- arg minAMSE is not connected) ≥ 1− δ.
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Let N be large enough so that, with probability (1− δ/2), for all n ≥ N ,

max
i

min
k 6=i

[yi − yj] < ε/2.

(To see that such an n can be found, one may divide the [−K,K] interval of values

to intervals of length ε/2 and choose N to be large enough so that, with the desired

probability, there are at least two observations in each such interval.)

Given such n ≥ N and the realizations of (yi)i≤n, consider the realizations of x
j.

Assume that, for some j, it so happens that
∣∣xji − yi∣∣ < ε/4 for all i ≤ n. In this

case, by setting wj to be suffi ciently high, and wl = 0 for l 6= j, one would obtain

MSE (w) ≤ ε and AMSE (w) ≤ ε + c.27 For each j, however, the probability that

this will be the case is bounded below by some ξ > 0, independent of n and j. Let

M1 (n) be a number such that, for any m ≥M1 (n), the probability that at least one

such j satisfies
∣∣xji − yi∣∣ < ε/4 is (1− δ/4), and letM (n) > M1 (n) be a number such

that, for any m ≥ M (n), the probability that at least one more such j′ > j satisfies∣∣∣xj′i − yi∣∣∣ < ε/4 is (1− δ/8).

Thus, for every n ≥ N , and every m ≥ M (n), with probability 1 − δ there are
two vectors, wj with support {j} and wj′ with support {j′}, each of which obtaining
MSE (w) ≤ ε and thus, both belonging to ε-arg minAMSE. To see that in this

case the ε-arg minAMSE is not connected, it suffi ces to note that no w with support

greater than a singleton, nor a w with an empty support (that is, w ≡ 0) can be in

the ε-arg minAMSE. �

Proof of Theorem 2:
We first verify that the problem is in NP. Given a database and a vector of

extended rational weights wj ∈ [0,∞], the calculation of the AMSE takes O (n2m)

steps as in the proof of Theorem 1. Specifically, the calculation of the similarity

function s (x, x′) is done by first checking whether there exists a j such that wj =∞
and xj 6= x′j (in which case s (x, x′) is set to 0), and, if not —by ignoring the j’s for

which wj =∞.
The proof that it is NPC is basically the same as that of Theorem 1, and we use the

same notation here. That is, we assume a given instance of SET-COVER: P , r ≥ 1

27The fact that xji is close to yi is immaterial, of course, as the variables x
j
i are not used to predict

yi directly, but only to identify the yk that would. If x
j
i is close to some monotone function of yi

the same argument would apply.
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subsets thereof, T1, ..., Tr ⊆ P , and an integer k, with P = {1, ..., p}, ∪i≤rTi = P , and

the incidence matrix zuv ∈ {0, 1}. We let n = 2 (p+ 1) and m = r, and, for u ≤ p,

i = 2u − 1, 2u is given by xji = z′uj,yi = 1 whereas for i = 2p + 1, 2p + 2, xji = 0 and

yi = 0. We again set c = (mn3)
−1
/2 and R = kc. This construction can obviously

be done in polynomial time.

We claim that there exists a vector w with AMSE(w, c) ≤ R iff a cover of size k

exists for the given instance of SET-COVER.28 For the “if”part, assume that such a

cover exists, corresponding to J ⊆M . Setting the weights

wj =

{
∞ j ∈ J
0 j /∈ J

one obtains AMSE(w, c) ≤ R.

Conversely, for the “only if”part, assume that a vector of rational weights w =

(wj)j (w
j ∈ [0,∞]) obtains AMSE(w, c) ≤ R. Let J ⊆ M be the set of indices of

predictors that have a positive wj (∞ included). By the definition of R (as equal to

ck), it has to be the case that |J | ≤ k. We argue that J defines a cover (that is, that

{Tv}v∈J is a cover of P ).
Observe that, if we knew that |J | = k, the inequality

AMSE(w, c) = MSE (w) + c |J | ≤ R = ck

could only hold ifMSE (w) = 0, from which it would follow that w provides a perfect

fit. In particular, for every i ≤ 2p there exists j ∈ J such that xji 6= xj2p+1 that is,

xji = 1, and J defines a cover of P .

However, it is still possible that |J | < k and 0 < MSE (w) ≤ c (k − |J |). Yet, even
in this case, J defines a cover. To see this, assume that this is not the case. Then, as

in the proof of Theorem 1, there exists i ≤ 2p such that for all j, either wj = 0 (j /∈ J)
or xji = 0 = xj2p+1. This means that s (xi, x2p+1) = s (xi, x2p+2) = 1. In particular,

y2p+1 = y2p+2 = 0 take part (with positive weights) in the computation of yswi and we

have yswi < 1 = yi. In the proof of Theorem 1 this suffi ced to bound the error |yswi − yi|
from below by 1

n
, as all observations with positive weights had the same weights. This

28This proof uses values of x and of y that are in {0, 1}. However, if we consider the same problem
in which the input is restricted to be positive-length ranges of the variables, one can prove a similar
result with suffi ciently small ranges and a value of R that is accordingly adjusted.
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is no longer the case here. However, the cases 2p+1, 2p+2 obtain maximal similarity

to i (s (xi, x2p+1) = s (xi, x2p+2) = 1), because xj2p+1 = xj2p+2 = xji (= 0) for all j with

wj > 0. (It is possible that for other observations l ≤ 2p we have s (xi, x2p+1) ∈ (0, 1),

which was ruled out in the binary case. But the weights of these observations are

evidently smaller than that of 2p+ 1, 2p+ 2.) Thus we obtain (again) that the error

|yswi − yi| must be at least 1
n
, from which SSE (w) ≥ 1

n2
and MSE (w) ≥ 1

n3
follow.

This implies AMSE(w, c) > R and concludes the proof. �
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nal of Statistics, Series A, 26: 359—372.

[45] Wittgenstein, L. (1922), Tractatus Logico Philosophicus. London: Routledge and

Kegan Paul.

43


