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1 Introduction

Recent years have seen a proliferation of online institutions that can be described as

“non-retail platforms”. Users of these platforms access them on a regular basis, in order

to engage in activities such as reading texts, listening to music, exchanging messages,

cultivating social links, etc. In particular, when they access the platform, it is not for

the purpose of buying from advertisers. If a user buys from a firm as a result of being

exposed to an ad posted on the platform, the transaction takes place off it; it will have

no effect on his activity on the platform, and it is quite likely that the platform does

not even monitor whether the transaction has taken place. However, the transaction

may temporarily depress the user’s demand for similar products, thus diminishing the

effectiveness of advertising them.

Of course, non-retail platforms are at least as old as the village message board.

What is special about the modern online version is that users’activity on the platform

leaves a massive trail of information that may be correlated with their consumption

tastes in various areas. As a result, the platform can help advertisers achieve better

targeting, which in turn helps the platform increase its advertising revenues. Here are

a few examples of what we have in mind.

Online radio stations like Pandora collect information about users’musical tastes (in

this respect, they differ from traditional radio), and can use that to target ads for

unrelated products. For instance, whether a user likes Country music may be correlated

with his politics and lifestyle preferences. But of course, he does not access Pandora

for the purpose of being informed about political candidates or buying vegan food.

E-mail services may use the content of personal e-mails to target users. If a user’s

e-mails start featuring numerous references to babies, he may experience increased

exposure to diaper ads on his e-mail account, although buying diapers is obviously not

the user’s primary objective when checking his e-mail.

Messaging platforms such as Whatsapp or Snapchat may be unable or unwilling to use

the content that users generate, for technical or legal reasons. However, the structure

of the social network among users may provide information about their types. For

instance, if users exhibit homophily - i.e., they associate with like-minded individuals -

then a large cluster in the network indicates that its members are likely to have similar

tastes.

Content sharing platforms such as Reddit are message boards that publish user-

generated content, and may monitor the content that users produce or consume.
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Of course, many platforms exhibit combinations of these features. For instance,

social media platforms like Instagram or Twitter can make use of the network structure

of their users as well as the content that they generate. While not all of these real-life

examples of non-retail platforms currently make use of this form of targeted advertising,

the potential to do so is inherent in them.

In this paper we study novel incentive issues that arise in advertising on non-retail

platforms. The source of the potential incentive problem is that advertisers have some

private information regarding the specific preference types in the consumer population

they would like to target. Therefore, the platform relies on their targeting requests

to allocate display ads to individual users, utilizing its own private information about

users. Since advertising fees could vary with the targeted audience, the advertiser’s

targeting request is a strategic decision, which involves trading off the likelihood of

a transaction against the fee. Furthermore, because users’ad-generated (offl ine) pur-

chases affect their willingness to make a subsequent purchase without having any visible

effect on their platform activity, it may be desirable for the platform to diversify the

type of ads it shows to an individual user. Even if a Country-music fan is relatively

unlikely to be interested in vegan food, exposing him to such ads every once in a while

may increase the long-run expected number of transactions generated by such a user.

This diversification motive turns out to create an incentive for advertisers to misrep-

resent their ideal targeting. Our aim is to understand the conditions in which this

incentive problem prevents the platform from attaining its first-best.

In our model, there is a group of n consumers who are constantly present on some

non-retail platform. Each consumer comes in one of two (private) preference types. A

type can describe whether the consumer is interested in “healthy food”, whether he

likes “highbrow”movies, whether he enjoys outdoor recreational activities, etc. The

platform obtains a noisy aggregate signal about the profile of consumers’types, and

updates its belief regarding their types. It then enables advertisers (a.k.a firms) to

post personalized display ads. Each firm is characterized by the quality of its match

with each consumer type - defined as the probability of transaction conditional on the

consumer’s exposure to the firm’s ad. This is the firm’s private information (in the

main version of our model, firms receive no additional information about the types of

individual consumers). Ex-ante, each firm communicates to the platform the type of

consumers it wants to target. Thus, ads are classified into “types” according to the

targeting request that accompanies them. Advertiser-platform communication of this

kind exists in reality. For instance, Pandora offers ad targeting based (among other

things) on users’music preferences or listening habits.

3



We assume that consumers’exposure to ads is governed by a personalized, station-

ary display rule that the platform designs. Specifically, the platform tailors a mixture

of ad types to each consumer - based on its updated belief regarding his type - such that

the ad he is exposed to at any period is drawn independently according to this mixture.

Ads are like “billboards”and transactions occur offl ine, unmonitored by the platform.

As soon as the consumer transacts with an advertiser, he switches to a “satiation”

mental state in which he is inattentive to ads, and he switches back to the attentive

state of mind with some constant per-period probability that captures the propensity

for repeat purchases. Thus, thanks to the simplifying assumption of stationary display

rules, we can depict the consumer’s experience at the platform as a personal two-state

Markov process, where certain transition probabilities are determined by the platform’s

personalized display rule.

The platform’s objective is to maximize total advertisers’surplus - defined as their

long-run number of transactions per period, and calculated according to consumers’

personal Markov processes - and to extract it by means of advertising fees. Because

the platform is uncertain about consumers’types and their mental state at any given

period, its optimal display rule may be interior - i.e., it may expose individual con-

sumers to both ad types. As mentioned above, this turns out to imply a motive for

advertisers to strategize their targeting request.

Our first observation is that optimal display rules approximately minimize the

amount of time that it takes a non-satiated consumer to transact. As a result, the

optimal probability that a firm is displayed to a particular consumer is approximately

proportional to the square root of the platform’s posterior probability (given the real-

ized signal) that the firm’s product fits the consumer’s type. In contrast, the advertising

fee that fully extracts a firm’s surplus is proportional to the prior probability that con-

sumers like its product. This discrepancy ends up discriminating against products with

mass appeal, and it gives firms an incentive to target the minority consumer group:

reduced ad exposure is more than compensated for by the reduced fee. Indeed, real-life

intermediaries help advertisers cope with such trade-offs by searching for the target au-

dience that gives the “best bang for the buck”. This may involve diverting the client’s

ad to a less-than-ideal audience because it may be significantly cheaper.1

Under what conditions on the environment’s primitives can the platform design an

1AdEspresso.com is a company that offers to help small businesses launch advertising campaigns
on social media. On their website they write, “The audience you choose will directly affect how
much you’re paying...if your perfect audience is just more expensive, that’s just the way it goes.”
The company Brandnetworks (bn.co) offers algorithmic ad management that maximizes the cost and
performance of ads in real-time.
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incentive-compatible policy (i.e., a display rule and advertising-fee schedule) that max-

imizes and fully extracts advertisers’surplus? Our interest in this question is two-fold.

First, it serves as a useful theoretical benchmark for the platform’s design problem.

Second, and perhaps more interestingly, it can be interpreted in the spirit of “welfare

theorems” in the competitive-equilibrium literature. We can think of the platform’s

policy as a market institution for allocating advertisers to consumers’limited attention,

which is the scarce resource in this environment. The full-surplus-extraction require-

ment is essentially a zero-profit condition that captures competitive behavior among

advertisers. Our question then becomes: Can an effi cient allocation of advertisers to

platform users be supported by a competitive market? We do not study “second-best”

policies when the first-best is not implementable: this is a challenging problem that

requires different analytical techniques and belongs to a different paper.

Our basic result is a necessary and suffi cient condition for the implementability

of the platform’s objective (assuming that exogenous parameters are such that the

optimal display rule is always interior - otherwise, our condition is merely suffi cient).

The condition is a simple inequality that incorporates two quantities: (i) on the L.H.S, a

measure of the informativeness of the platform’s signal; specifically, the Bhattacharyya

Coeffi cient of similarity between the distributions over signals conditional on the two

possible type realizations of a single consumer; and (ii) on the R.H.S, an expression

that is monotone in the ratio between the ex-ante probabilities of the two consumer

types.

The chief merit of this characterization is that it isolates the platform-specific details

and summarizes them by the L.H.S’s Bhattacharyya Coeffi cient, which characterizes

the amount of information that consumers generate at the platform. The inequal-

ity’s R.H.S summarizes the consumers’features that are independent of the platform.

Therefore, examining various types of platforms is reduced to studying their induced

Bhattacharyya Coeffi cients. Another virtue of the inequality is that it makes com-

parative statics more transparent. The inequality is easier to satisfy when the signal

becomes more informative, when consumers are less attentive to ads, when the gap be-

tween high- and low-quality match probabilities is smaller, and when repeat purchases

are more frequent. However, it is important to emphasize that the two sides of the

inequality are generally interdependent: in many applications of interest, the signal’s

informativeness varies with the consumer-type distribution. This interdependence can

sometimes have surprising implications.

We apply our basic result to two specifications that capture different non-retail

platforms. These applications are not meant to be faithful descriptions of specific real-
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life platforms. Rather, they isolate key aspects of modern non-retail platforms in a

stylized, abstract manner, in order to study the incentive issues they create.

First, we consider a simple example of a content platform, in which users are con-

sumers of content. The key assumption is that content consumption depends on users’

types as well as the available content. In particular, users may consume content which

does not fit their type if that is the only available kind of content on the platform.

We show that the platform’s first-best is implementable if the type distribution is not

too asymmetric and if the content supply is suffi ciently large. The reason is that such

environments are more likely to generate varied content supply, which in turn means

that users’observed content consumption is informative of their types.

The second and more elaborate application examines a social network, where the

only information that is available to the platform is the network structure, and the

probability of a link between two users is an independent probability of their types.

We show that unlike the content-platform example, the first-best is not implementable

if the consumer type distribution is either too asymmetric or too uniform. We then

ask whether a larger network makes it easier for the platform to implement its ob-

jective. Following the Network Science literature on community detection, we assume

that users’propensity to form links decreases with network size, such that the expected

degree of an individual node grows only logarithmically in n. Applying a recent result

on the community-detection problem (Abbe and Sandon (2015)), we obtain a suffi cient

condition for the implementability of the platform’s objective for large n in terms of

parameters of the network-generating process. Thus, our analysis uncovers a connec-

tion between the community-detection problem in Network Science and the economic

question of incentivizing targeted advertising on social networks.

Related literature

This paper belongs to a research agenda that explores novel incentive issues in mod-

ern platforms. Our earlier exercise in this vein, Eliaz and Spiegler (2015), studied an

environment in which consumers submit noisy queries to a “search platform”, which

responds by providing consumers with a “search pool” - i.e., a collection of products

that they can browse via some search process. The platform’s problem is to design

a decentralized mechanism for effi ciently allocating firms into search pools and ex-

tracting their surplus. Thus, unlike non-retail platforms, the search platform’s sole

function is to match users with advertisers. Eliaz and Spiegler (2015) introduced the

Bhattacharyya Coeffi cient (defined for the distribution over consumers’queries as a

function of their preference type) as a useful tool for representing IC constraints. The

present paper further demonstrates the power of this tool in a different context, and
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with new technical challenges that arise from the applications (e.g., the community

detection problem in social networks).

There has been a growing interest in targeted advertising in the I.O. literature. One

strand of this literature analyzes competition between advertising firms that choose

advertising intensity, taking into account the cost of advertising and the probability

that their advertising messages will reach the targeted consumers. Notable papers

in this literature include Iyer et al. (2005), Athey and Gans (2010), Bergemann and

Bonatti (2011), Zubcsek and Sarvary (2011) and Johnson (2013). A second strand of

this literature studies how to optimally propagate information about a new product by

targeting specific individuals in a social network. Recent papers in this strand include

Galeotti and Goyal (2012) and Campbell (2015) (see Bloch (2015) for a survey).

Bergemann and Bonatti (2015) study a different aspect of using information about

consumers for advertising purposes. In their model, a single data provider offers firms

information about the potential value of matches with various consumers, where the

information is obtained from consumers’online activities.

2 A Model

Let N = {1, ..., n} be a set of consumers and let T = {x, y} be a set of possible types
of each consumer. We consider a stationary environment in which a consumer of type

t ∈ T is in one of two states: a “demand state”Dt in which the consumer buys a

product with positive probability when he is exposed to an ad for it (we describe below

the ad-display and purchase processes) and a “satiation state”St in which the consumer

is not interested in consumption. The consumer’s transition between states obeys the

following mechanical rule. He switches from his demand state to his satiation state as

soon as he buys a product. When the consumer is in his satiation state, he switches

back to his demand state with independent per-period probability ε. This parameter

captures consumers’propensity for repeat purchases. The assumption that there is a

single satiation state that is independent of recently purchased products is of course a

major simplification, which enables us to capture the element of consumer satiation in

the most parsimonious way.

The set of products offered by advertisers can be partitioned into two types, also

labeled x and y. The probability that a consumer buys a product conditional on being

exposed to its ad while in his demand state is θH when the product’s type coincides

with his own type, and θL when it does not, where θL < θH . The parameters θL, θH
also reflect consumers’ general attention to ads: raising both by a common factor
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captures greater attentiveness. We say that an advertiser is of type t if it offers a type

t product. There are m advertisers of each of the types (our analysis will focus on the

case of large m). Each advertiser can costlessly supply any amount of its product. If

a consumer acquires a product from an advertiser, the advertiser earns a fixed payoff

of 1. In particuar, our model completely abstracts from product prices.2

Consumers have constant, uninterrupted access to a non-retail platform, which

receives a signal from a set Wi about each consumer i, where W1 = · · · = Wn. The

signal is received ex-ante, once and for all, before stochastic process that describes

consumers’behavior begins. Denote W = W1 × · · · ×Wn. We sometimes refer to the

profile of signals w ∈ W as an aggregate signal. Signals about individual consumers

may be correlated. The platform does not receive any information about the types of

individual advertisers. Advertisers receive no information about consumer types - we

relax this assumption in Section 6.

Let µ ∈ ∆(T1×· · ·×Tn×W ) be a joint distribution over the profile of consumer types

and the platform’s aggregate signal. We use µi(ti, w) to denote the probability that a

given consumer i is of type ti and the aggregate signal realization is w. Let µi(x) =∑
w∈W µi(x,w) be the ex-ante probability that ti = x, and let µ(w) =

∑
x µi(x,w)

be the ex-ante probability that the aggregate signal realization is w. Given some

realization w, the conditional probability that ti = x is denoted µi(x|w). Likewise,

µ(w|ti) describes the distribution over aggregate signals conditional on consumer i’s
type. We assume that µ is label-neutral. That is, for every permutation f : N → N ,

µ((ti, wi)i∈N) ≡ µ((tf(i), wf(i))i∈N). In particular, µi(x) = µ(x) = π for all i ∈ N .

Assume π ≥ 1
2
, without loss of generality.

Example 1: Targeting based on e-mail content

Consider two users of an e-mail service. A user of type x is expecting a baby or has

a newborn, whereas a user of type y does not. This may affect their preferences over

a wide range of products. For example, type x is likely to be more interested in home

entertainment and diapers, whereas type y is likely to be more interested in concerts or

alcohol. The platform that operates the e-mail service monitors users’sent mail folder.

Let wi = x indicate that the users’sent e-mails contain references to babies, and wi = y

indicates that they do not. However, the two users are friends who exchange messages

with each other, and the platform’s algorithm cannot tell whether a user refers to his

own baby or his friend’s. Moreover, assume that a user of type x always sends e-mails

2It is easy to adapt our analysis to the case of profit margins that vary across product types:
increasing the profit margin of product x is equivalent to increasing π. We assume symmetry across
product types purely for notational simplicity.
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that mention his baby, while a user of type y mentions babies with positive probability

ξ ∈ (0, 1) only when his friend has one. Thus, µ((w1, w2) | (t1, t2)) is given by the

following table:
(t1, t2)\(w1, w2) x, x x, y y, x y, y

x, x 1 0 0 0

x, y ξ 1− ξ 0 0

y, x ξ 0 1− ξ 0

y, y 0 0 0 1

We will make use of this example to illustrate the results in the next section. �

How does the platform match advertisers and consumers? At every time period

and for each consumer i, the platform selects an advertiser according to a stationary

random process we will describe momentarily and displays it to the consumer in the

form of an advertising banner. Each ad expires at the end of the period and a new one

is displayed in the next period. We think of ads as “billboards”: transactions between

consumers and advertisers take place “offl ine”and the platform cannot monitor them.

In particular, there is no notion of “clicking”on display ads.

The display of ads is governed by a personalized, stationary rule that the platform

commits to ex-ante. Formally, qi(t|w) is the probability that at any time period,

the platform displays an advertiser of type t ∈ {x, y} to consumer i, conditional on
the aggregate signal realization w. Conditional on displaying an advertiser of type

t, each of these advertisers is drawn with equal probability. Hence, the probability

that a particular advertiser of this type is displayed is qi(t|w)/m. We refer to q(w) =

(qi(x|w))i∈N as the platform’s display rule for w. Let Ft be the per-period fee the

platform charges advertisers of type t. Denote q = (q(w))w∈W , F = (Fx, Fy). The pair

(q, F ) constitutes the platform’s policy.

Given that the consumer cycles between his two mental states indefinitely, the

assumption of stationary display rules means that the consumer’s behavior over time

obeys a two-state Markov process. Formally, given a signal w and a display rule q(w),

the transition probabilities between the mental states of consumer i of type t are given

by the following matrix:

Dt St

Dt 1− θHqi(t|w)− θL(1− qi(t|w)) θHqi(t|w) + θL(1− qi(t|w))

St ε 1− ε
(1)

Hence, given w and q(w), the joint invariant probability that consumer i is in state Dt
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is

ρi(t|w) ≡ µi(t|w)ε

qi(t|w)(θH − θL) + θL + ε
(2)

As will be shown shortly, this formula leads to a simple expression for the long-run

average number of transactions for each consumer.

2.1 Discussion

Consumer and advertiser types. We envision the consumer as a vector of unobservable

personality attributes. For simplicity, we imagine that the possible realizations of this

collection of attributes can be partitioned into two groups, x and y, such that every

product that is offered in the market is more appealing to one of the two groups. Thus,

we interpret advertisers of type x (y) as offering a variety of products, which all share

the feature that they are more appealing to x (y) consumers.

The firms’ private information. One could argue that the platform need not rely

on advertisers’ targeting requests - in principle, it could examine each advertiser’s

product and figure out the quality of its match with each consumer type. However,

this type of monitoring has a cost that the platform can avoid by decentralizing the

ad-classification task. Furthermore, in many cases advertisers have private information

regarding the type of consumers who are attracted to their product, thanks to prior

market research. For instance, certain food items (granola bars, artificially sweetened

products) are not easy to classify a priori in terms of their appeal to “health-conscious”

consumers. Likewise, the defining lines of “highbrow”movies or holiday packages that

fit “outdoorsy” tourists are quite blurred. In these cases, market studies are likely

to reveal information that the platform lacks. It is implausible for the platform to

replicate such studies in the myriad industries it interacts with.

Per-period fee vs. price per-display. Our analysis will remain unchanged if we assume

that instead of charging a per-period fee, the platform charges a price-per-display.

Likewise, we could allow prices to be a function of w, without any effect on our analysis.

This is because advertisers in our model are risk neutral and care only about the

expected number of transactions and the expected payment. It is therefore convenient

analytically to assume lump-sum transfers, even if this may appear unrealistic when

taken literally.

The stationarity assumption. Stationary in our model has exogenous and endogenous

aspects. The former arises from our assumption that ads are “billboards”; the platform

cannot monitor whether consumers pay attention to ads and whether they transact
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with firms. Therefore, it cannot learn anything about consumers’types beyond the

signal w. For a concrete example, think of listening to Pandora while jogging. Even

so, stationary display rules (which is the endogenous aspect) carry a loss of generality.

If we relaxed this assumption and allowed the platform’s display rule to follow

some Markov process with an arbitrary number of states K, the consumer’s behavior

over time would obey a 2K-state Markov process, and therefore the long-run average

number of transactions would be hard to characterize. Nevertheless, we believe that

the qualitative insights of our model would not change, as long as we assume that

advertisers do not know the initial state of the Markov process - they would still treat

the allocation of ad slots at any given period as a random variable, albeit one whose

distribution is diffi cult to calculate. The stationarity assumption is thus a simplifying

approximation that enables us to tractably capture the platform’s motive to diversify

its ad types over time.

Suppose that ads are not billboards, such that the platform can partially monitor

whether consumers notice them - e.g. through clicks (and let us retain the rather

realistic assumption that the platform does not monitor transactions). If clicks are

uncorrelated with consumers’ types, then exogenous stationarity continues to hold,

and pricing displays is equivalent to pricing clicks. Therefore, we can think of our

stationarity and pricing assumptions as reasonable approximations to situations in

which clicks convey little information about consumer types.

3 Basic Results

In this section we characterize the policy that would maximize the platform’s adver-

tising revenues if it could observe advertisers’types, and then derive conditions for the

incentive-compatibility of the optimal policy.

3.1 Optimal Policies

The platform’s objective is to find a policy (q, F ) that maximizes expected profits. For

this purpose, let us first derive the collection of display rules that maximizes advertis-

ers’surplus. The gross expected per-period payoff (without taking into account any

payment to the platform) for an advertiser of type t is calculated as follows. For each

consumer i ∈ N , we multiply the invariant probability that the consumer is in his

demand state by the probability that he transacts conditional on being in this state.

Then, we sum over all consumers. It follows that the expected number of transactions
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per period with advertisers of type x is

Ux(q) ≡
∑
i∈N

∑
w∈W

µ(w)qi(x|w)[θHρi(x|w) + θLρi(y|w)] (3)

Similarly, the expected number of transactions per period with advertisers of type y is

Uy(q) ≡
∑
i∈N

∑
w∈W

µ(w)qi(y|w)[θHρi(y|w) + θLρi(x|w)] (4)

Let q∗(w) be the display rule that maximizes the sum

Ux(q) + Uy(q) (5)

We refer to q∗(w) as the optimal display rule for the aggregate signal realization w. The

optimal fee that the platform charges advertisers of type t, denoted F ∗t , fully extracts

the maximal surplus of these advertisers - i.e., F ∗t = Ut(q
∗(w)).

Note that for a fixed µ, if consumers are suffi ciently inattentive to ads in the sense

that both θH and θL are suffi ciently close to zero, the optimal display rule is generically

a corner solution: q∗i (t|w) = 1 if µi(t|w) > 1
2
. When q∗i (w) is interior, first-order

conditions imply

ρi(x|w)

ρi(y|w)
=

√
µi(x|w)

µi(y|w)
(6)

Substituting the R.H.S. of (2) for ρi(x|w) allows us to solve explicitly for q∗i (x|w):

q∗i (x|w) =
λH
√
µi(x|w)− λL

√
µi(y|w)√

µi(x|w) +
√
µi(y|w)

(7)

where

λH ≡
θH + ε

(θH + ε)− (θL + ε)
and λL ≡

θL + ε

(θH + ε)− (θL + ε)

(note that λH − λL = 1). As λL → 0,

q∗i (x|w)→
√
µi(x|w)√

µi(x|w) +
√
µi(y|w)

(8)

Henceforth, we assume that the primitives µ, λH and λL are such that

λL
λH

<

√
µi(x|w)

µi(y|w)
<
λL + 1

λH − 1
(9)
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for every w and every i, such that q∗(w) is an interior solution for every w. As θL and

ε get smaller, this condition becomes less restrictive.

The latter observation highlights the role of consumer satiation in our model. Sup-

pose that consumers experienced no satiation at all, such that their behavior would be

described by a single-state process in which they demand their favorite product at every

period. Then, the solution to the platform’s optimal display problem would be bang-

bang: if µi(t | w) > 1
2
, it would display type-t ads to consumer i with probabiity one

at every period. This case is partially approached in our two-state model when ε = 1,

such that the consumer’s satiation lasts exactly one period. In this case, condition (9)

holds for the smallest set of other primitives µ, θL, θH . Thus, our two-state Markov

process is the simplest formalization of the aspect of consumer satiation that gives

rise to interior optimal display rules, which in turn create an incentive-compatibility

problem. We turn to this problem in the next sub-section.

3.2 Incentive Compatibility

In order to implement the optimal policy, the platform needs to know advertisers’types.

Now suppose that the platform is unable to directly verify this information. Therefore,

it relies on advertisers’self-reports - which we interpret as requests to target a specific

preference group. The reports are submitted ex-ante, once and for all - that is, we do

not allow for dynamic reporting, in line with our restriction to stationary environments.

A policy (q, F ) is incentive-compatible (IC) if no single advertiser has an incentive

to misreport its type, given that every other advertiser reports truthfully.3 When a

single advertiser of type x pretends to be y, it changes its probability of display from

qi(x|w)/m to qi(y|w)/(m + 1) for each consumer i. Hence, the transition probability

from Dx to Sx changes to

θH [qi(x|w) +
qi(y|w)

m+ 1
] + θLqi(y|w)(

m

m+ 1
)

since a type x consumer will transact with probability θH if the displayed ad is either

by one of the truthful x advertisers or by the single deviating advertiser, and with

probability θL if the displayed ad is by one of the truthful y advertisers. Similarly, the

3In principle, the platform could design a more general mechanism that exploits its knowledge of
m, such that all advertisers are severely punished if the number of x reports is not m. This would
make truthful reporting trivially incentive-compatible. However, this device is very artificial and
unreasonably relies on exact knowledge of m.
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transition probability from Dy to Sy changes to

θH [qi(y|w)(
m

m+ 1
)] + θL[qi(x|w) +

qi(y|w)

m+ 1
]

Consequently, the invariant probability that consumer i is in state Dx is

ρ̃i(x|w) =
µi(x|w)ε

( m
m+1

)(θH − θL)qi(x|w) + θH( 1
m+1

) + θL( m
m+1

) + ε

and the invariant probability that he is in state Dy is

ρ̃i(y|w) =
µi(y|w)ε

( m
m+1

)(θH − θL)qi(y|w) + θL + ε

In a similar manner, we can derive the invariant probabilities when a single y advertiser

deviates. Note that ρ̃i → ρi as m→∞.
It follows that an x advertiser weakly prefers to report its type if and only if

∑
i∈N

∑
w∈W

µ(w)
qi(x|w)

m
[θHρi(x|w) + θLρi(y|w)]− Fx

≥
∑
i∈N

∑
w∈W

µ(w)
qi(y|w)

m+ 1
[θH ρ̃i(x|w) + θLρ̃i(y|w)]− Fy

We refer to this inequality as the IC(x, y) constraint. The IC constraint of a y adver-

tiser, referred to as IC(y, x), is similarly defined.

We wish to derive conditions under which the optimal policy (q∗, F ∗) is IC in the

m → ∞ limit. When it is, we say that the optimal policy is implementable. Because

F ∗ fully extracts advertisers’surplus, the L.H.S of IC(x, y) and IC(y, x) is zero. In

the m→∞ limit, the inequalities thus reduce to∑
i∈N

∑
w∈W

µ(w)qi(y|w)[ρi(x|w)− ρi(y|w)] ≤ 0 (10)∑
i∈N

∑
w∈W

µ(w)qi(x|w)[ρi(y|w)− ρi(x|w)] ≤ 0

Plugging the solution for q∗ from the previous sub-section, we can obtain a necessary

and suffi cient condition for implementability of the optimal policy in them→∞ limit.

However, in order to present this condition in an interpretable, transparent form, we

need to introduce a new concept.
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The Bhattacharyya Coeffi cient

Suppose that we learned the type of a particular consumer i. Then, we could up-

date our beliefs over the aggregate signal realization w. The conditional distributions

(µi(w|ti)w∈W , ti = x, y, describe these updated beliefs. The following measure of sim-

ilarity between these two conditional distributions turns out to play a key role in the

condition for implementability of the optimal policy. Define

S ≡
∑
w∈W

√
µi(w|x)µi(w|y) (11)

Note that the label-neutrality of µ implies that S is the same for all consumers i.

In the Statistics and Machine Learning literatures, S is known as the Bhattacharyya

Coeffi cient that characterizes the distributions µi(·|x) and µi(·|y).4 From a geometric

point of view, this is an appropriate similarity measure because S is the direction cosine

between two unit vectors in R|W |, (
√
µi(w|x))w∈W and (

√
µi(w|y))w∈W . The value of

S increases as the angle between these two vectors shrinks; S = 1 if the two vectors

coincide; and S = 0 if they are orthogonal. More importantly, S is a measure of the

informativeness of the platform’s signal. The stochastic matrix (µi(·|t))t∈{x,y} can be
viewed as an information system in Blackwell’s sense. The following result (which is

stated and proved in Eliaz and Spiegler (2015)) establishes a link between Blackwell

informativeness and the Bhattacharyya Coeffi cient.

Remark 1 The Bhattacharyya Coeffi cient S decreases with the Blackwell informative-
ness of (µi(·|t))t∈{x,y}.

Example 1 revisited

To illustrate the Bhattacharyya Coeffi cient in our context, let us revisit the e-mail

example of Section 2. Consider the distribution over signals conditional on the two

possible types of user 1. First, note that the signals (y, y) and (y, x) are impossible

when t1 = x because by assumption, such a user type always sends an e-mail with

reference to babies. Second, the signal (x, y) is impossible when t1 = y, because this

babyless type can only refer to babies if his friend has a baby, which would then

imply w2 = x, a contradiction. It follows that the only signal realization w for which

µ1(w|x)µ1(w|y) > 0 is (x, x). Therefore,

S =
√
µi((x, x)|x)µi((x, x)|y) =

√
(π + (1− π)ξ) · πξ

4See Basu, Shioya and Park (2011) and Theodoris and Koutroumbas (2008). A related concept is
the Hellinger distance between distributions, given by H2(x, y) = 1−

√
S(x, y).
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Note that S increases in both π and ξ. That is, the platform’s signal is more informative

as the type distribution becomes more symmetric and as babyless users become less

likely to mention babies in their e-mails. �

Our analysis in later sections will make use of the following property of the Bhat-

tacharyya Coeffi cient.

Remark 2 Suppose that we can represent w as a pair, w = (g1, g2), such that µ(g1, g2|t) ≡
µ(g1|t)µ(g2|t) - i.e., g1 is independent of g2 conditional on t, according to µ. For every
k = 1, 2, define

Sk =
∑
gk∈Gk

√
µ(gk|x)µ(gk|y)

Then, S = S1 · S2.

Remark 2 says that the Bhattacharyya Coeffi cient induced by a collection of signals

that are independent conditional on the consumer’s type is the product of the signals’

coeffi cients. The property follows immediately from the coeffi cient’s definition, and

therefore the proof is omitted.

As an aside, we note that the Bhattacharyya Coeffi cient is useful in understanding

how the platform’s payoff from the optimal policy (q∗, F ∗) depends on the signal’s

informativeness. If we plug the solution (7) into the advertisers’total surplus (5), we

obtain:

nε

[
θ̄ + 1

2
ε

θ̄ + ε
− ε
√
π(1− π)

θ̄ + ε
S

]
where θ̄ = 1

2
(θH + θL). This expression for the platform’s “first-best”payoff decreases

with the Bhattacharyya Coeffi cient S when π is held fixed (however, as we saw in

Example 1, S can vary with π). The intuition is that a more informative signal facili-

tates effective targeting and therefore increases the average number of transactions per

period.

Condition for implementing the optimal policy

The next result employs the Bhattacharyya Coeffi cient to derive a simple necessary and

suffi cient condition for implementability of the optimal policy. The following result -

as well as all subsequent ones - focuses on implementability in the m → ∞ limit.

Equivalently, we could obtain it for any finite m if we assumed that advertisers are

“price takers” in the sense that they do not take into account the effect of their own

behavior on the transition probabilities in the consumer’s Markov process.
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Proposition 1 Suppose that q∗(w) is an interior solution for every w. Then, (q∗, F ∗)

is implementable if and only if

S ≤ (
λH

λL + λH
)

√
1− π
π

+ (
λL

λL + λH
)

√
π

1− π (12)

Thus, implementability of the optimal policy depends on two factors: the “type

ratio”π/(1 − π) and the informativeness of the platform’s signal (as captured by the

Bhattacharyya Coeffi cient of µ). Recall the analogy to “welfare theorems”described

in the Introduction. Proposition 1 can be viewed as a characterization of environments

in which competitive markets can sustain an effi cient allocation of advertisers over

consumers’scarce attention.

To get an intuition for the result, consider the λL/λH → 0 limit, where a consumer

rarely buys a product from a poor-match advertiser and where repeat purchases are

rare, such that condition (12) simplifies into

S

√
π

1− π ≤ 1 (13)

The optimal display probability q∗i (t|w) in the λL/λH → 0 limit is proportional to the

square root of µi(t|w). By comparison, the fee paid by a firm that submits the report t is

proportional to µ(t). Thus, although a product with high µi(t|w) gets an advantage in

terms of display probability, the square root factor softens this advantage. The optimal

policy’s differential treatment of display probabilities and fees is a force that favors the

less popular product type y, thus creating an incentive for x firms to misreport. When

the type ratio π/(1 − π) gets larger (holding S fixed, for the sake of the argument -

the two terms are often interdependent), the gap between the fees paid by firms of

different types widens, and this exacerbates the misreporting incentive. As the signal

becomes more informative, the values of µi(t|w) get closer to zero or one, such that the

“square root effect”vanishes, and this mitigates the misreporting incentive. Finally,

recall that the platform conditions the display probabilities on w, whereas advertisers

are uninformed of w at the time they submit their reports. When the signal is highly

informative, a firm that chooses to misreport knows it will be displayed with high (low)

probability to consumers with low (high) probability of transacting with it, and this is

another force that mitigates the misreporting incentive.

The probability ε of exiting the satiation state and the match-quality parameters θL
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and θH contribute to the coeffi cient λL/(λL+λH) that features in condition (12). Note

that λL/(λL+λH) ∈ (0, 1
2
) and that it increases with λL/λH , implying that it increases

with ε and θL but decreases with θH . Because π ≥ 1
2
, an increase in λL/(λL + λH)

leads to an increase in the R.H.S of (12), and therefore makes the condition easier

to satisfy. The following result summarizes the comparative statics of the necessary

condition with respect to λL/λH .

Proposition 2 If the optimal policy is not implementable for a given λL/λH , then it
is not implementable under λ′L/λ

′
H < λL/λH .

In particular, as consumers become more attentive to ads (in the sense that θL and

θH increase by the same factor), and as the propensity for repeat purchases declines,

the condition for implementing the optimal policy becomes harder to meet.

Condition for first-best implementability in Example 1

Let us write the condition for implementing the first-best in this example in the

λL/λH → 0 limit: √
(π + (1− π)ξ) · πξ ≤

√
1− π
π

which simplifies into

π3ξ(1− ξ) + π2ξ + π − 1 ≤ 0

We can see that if π is suffi ciently close to 1
2
, the condition holds for all ξ. However,

for every suffi ciently high π, there exists ξ∗(π) such that the condition fails for all

ξ > ξ∗(π). Thus, a more symmetric distribution of consumer types is unambiguously

better for implementability of the first-best. As we will later see, this is not always the

case.

More than two types

Throughout this paper, we assume that there are only two preference/product types, x

and y. Suppose that there are K > 2 types, denoted x1, ..., xK . Suppose that the high-

quality match probability θH applies whenever firms’and consumers’types coincide,

and that the low-quality match probability θL applies in any other case. Consider the

case in which the optimal display rule is interior: q∗i (xk|w) > 0 for all i ∈ N , w ∈ W
and k = 1, ..., K. Then, it is straightforward to show that a necessary and suffi cient

condition for implementability of the optimal policy is that for every pair of types xk
and xk∗,

S(k, k∗) ≤ (
λH

λH+λL
)

√
µ(xk)

µ(xk∗)
+ (

λL
λH+λL

)

√
µ(xk∗)

µ(xk)
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where µ(xk) is the ex-ante probability that a consumer is of type xk, and S(k, k∗) is

the Bhattacharyya Coeffi cient of (µ(w|xk))w∈W and (µ(w|xk∗))w∈W .

4 Content Platforms

In a prevalent type of non-retail platforms, users upload and consume content. In

the case of online newspapers, users’role is almost entirely limited to consumption.

Other platforms treat users as both producers and consumers of content. In some cases

(e.g., Reddit), the platform is roughly like a communal message board. In others (e.g.

Pinterest) there are also elements of a social network. One common feature of these

content platforms is that the content that a user consumes reflects not only his personal

taste but also the availability of various types of content (and therefore, indirectly, other

users’types). In particular, a user may fail to consume his ideal content if it is scarce

or not prominent.

In this section we study a simple and very stylized example of advertising on a con-

tent platform. Suppose that the consumer population consists of n content consumers.

The consumers all face a supply of m content items. Each item is generated by a pro-

ducer, whose type is drawn from the same distribution as the consumers, such that a

producer of type t ∈ {x, y} always uploads content of type t. We ignore the targeting of
content producers, and focus entirely on consumers (one justification is that producers

reveal their type with high probability, and therefore generate no incentive issues for

advertising). Each consumer always consumes exactly one of the m available items.

Thus, the signal about each consumer i specifies the types of each of the m available

content items as well as the type of the item that consumer i consumes. Consumer of

type t consumes type t content whenever it is available. It follows that the only case

in which the consumer will not consume his type of content is when all m items are of

the other type.

Proposition 3 The first-best is implementable in the λL/λH → 0 limit if and only if

πm + (1− π)m ≤
√

1− π
π

Proof. In this example, deriving the Bhattacharyya Coeffi cient is very simple. When-
ever the signal realizationw is such that both content types are available, each consumer
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consumes his type of content with probability one. In this case, either µi(w|x) = 0

or µi(w|y) = 0, hence w contributes a zero term to the coeffi cient. It follows that

the only signal realizations w that have a positive contribution to the Bhattacharyya

Coeffi cient are those in which only one type of content is available, and in this case con-

sumer choices are completely uninformative of their type, such that µi(w|x) = µi(w|y).

As a result, the contributed term
√
µi(w|x)µi(w|y) is equal to the probability of the

realized available content profile. Therefore, S = πm + (1 − π)m. The result follows

immediately.

This result captures the intuition that a large supply of content that is drawn

from a diverse distribution increases the likelihood that consumers’observed content

consumption will reveal their tastes, and hence the informativeness of the platform’s

signal. The result also demonstrates the simplification achieved by expressing the

implementability condition in terms of the type distribution and the Bhattacharyya

Coeffi cient. As in Example 1, the condition is easier to satisfy when π is closer to 1
2
.

Specifically, for every m > 1 there is a critical value π∗(m) ∈ (1
2
, 1), such that the

condition for first-best implementability holds if and only if π ≤ π∗(m). Note that

π∗(m) increases with m - i.e., a larger supply of content makes it easier to implement

the first-best, because the uninformative signal realizations become rarer. Because

moving π closer to 1
2
improves both the informativeness and the “type ratio”factors,

the comparative statics are clear-cut.

5 Social Networks

We now turn to our main application in this paper, where the platform operates a social

network - i.e., it enables consumers to form social links with each other. Whether a pair

of consumers is linked depends stochastically on their types. The network structure

does not evolve over time. Many non-retail platforms nowadays include some element

of a social network. We focus entirely on the informational content of the network

structure itself, and ignore other aspects of the users’ activity on the network that

may generate valuable information for advertisers. This will enable us to establish a

theoretical connection with an interesting question in the Network Science literature.

Formally, a social network is a random non-directed graph in which consumers are

nodes. The set W can thus be redefined as the set of all possible networks. From now

on, we will refer to elements in N as consumers or nodes interchangeably. We assume

that µ obeys a random graph process known as the stochastic block model (SBM). An

SBM is characterized by a triplet (n, σ, P ), where n is the number of nodes, σ is a
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probability vector over k types and P is a k × k symmetric matrix, where the entry
Pij gives the independent probability that a node of type i forms a link with a node of

type j. In the case of k = 2 that fits our model, the type distribution σ is represented

by π, and the connectivity matrix P is characterized by three parameters: px, the

probability that two x types connect, py; the probability that two y types connect; and

pxy the probability that different types connect. The components σ and P generate a

joint distribution µ over consumer-type profiles and social networks that satisfies the

label-neutrality property we assumed in Section 2.

The following are two natural specifications of the two-type SBM. Under homophily,

agents with similar characteristics are more likely to connect. The connectivity matrix

in this case can be captured by two parameters: px = py = α and pxy = β < α. An

alternative story is that some agents have a greater propensity to form social links than

others. We refer to this specification as extroversion/introversion. This case can also

be represented with two parameters α > β, such that px = α2, py = β2 and pxy = αβ.

Example 2: A three-node network with perfect homophily

Let n = 3 and assume that nodes i and j are linked in w if and only if ti = tj. Then,

the network is pinned down by the profile of consumer types. In particular, the only

networks that are realized with positive probability are the fully connected graph and

a graph in which exactly two nodes are connected. We can use this observation to

calculate µi(w|ti). For example, the probability that the network is fully connected
conditional on t1 = x is π2, while the probability of this network conditional on t1 = y

is (1− π)2; the probability of the network in which only 1 and 2 are linked conditional

on t1 = x is π(1− π); and so forth.

The Bhattacharyya Coeffi cient in this example is as follows. Let wijl denote the

fully connected network, and let wij denote the network in which only nodes i and j

are linked. Then,

S =
√
µi(wijl|x)µi(wijl|y) +

√
µi(wjl|x)µi(wjl|y) + 2

√
µi(wij|x)µi(wij|y) = 4π(1− π)

Therefore, the first-best is implementable in the λL/λH → 0 limit if and only if

4π(1− π) ≤
√

1− π
π

which simplifies into

16π3(1− π) ≤ 1

Thus, the condition is satisfied as long as π ' 0.92. That is, implementability of
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the first-best requires a highly asymmetric type distribution. Contrast this with our

findings in the previous section, where implementability depended on a relatively sym-

metric type distribution. �

This example might suggest that asymmetric type distributions are always con-

ducive to implementing the first-best in the social-networks example. This turns out

not to be the case for generic connectivity matrices. In particular, when the type ratio

is too large or too small, the optimal policy is not implementable when λL/λH is small.

Proposition 4 Fix n ≥ 2 and a generic P . There exist π∗, π∗∗ ∈ (1
2
, 1) with the

property that for every π ∈ (π∗, 1) ∪ (1
2
, π∗∗) and every suffi ciently small λL/λH , the

optimal policy is not implementable.

Proof. Our method of proof is to obtain two different lower bounds on S, and use
these bounds to derive π∗ and π∗∗.

(i) Fix a node i. Suppose that the platform were informed of the realized network

w, as well as of tj for all j 6= i. This would clearly be a (weakly) more informative

signal of ti than learning w only. Moreover, conditional on learning (tj)j 6=i, the link

status between any j, h 6= i has no informational content regarding ti (follows from

the assumption that the SBM is known and from Remark 1). Therefore, in order to

calculate a lower bound on S, we can consider a signal that consists of (tj)j 6=i and the

link status between i and every other j.

Let us calculate the Bhattacharyya Coeffi cient of the signal that consists of learning

tj and whether nodes i and j are linked:

√
πpx · πpxy +

√
π(1− px) · π(1− pxy)

+
√

(1− π)pxy · (1− π)py +
√

(1− π)(1− pxy) · (1− π)(1− py)

= π

(
√
pxpxy +

√
(1− px)(1− pxy)

)
+ (1− π)

(
√
pypxy +

√
(1− py)(1− pxy)

)
Because signals that correspond to different nodes j 6= i are independent conditional

on ti, Remark 2 implies that the Bhattacharyya Coeffi cient of the signal that consists

of (tj)j 6=i and the link status between i and every other j is[
π

(
√
pxpxy +

√
(1− px)(1− pxy)

)
+ (1− π)

(
√
pypxy +

√
(1− py)(1− pxy)

)]n−1
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Recall that by construction, this expression is weakly below S. Without loss of gener-

ality, let

√
pxpxy +

√
(1− px)(1− pxy) ≤

√
pypxy +

√
(1− py)(1− pxy)

Then, S is weakly above

δ ≡
(
√
pxpxy +

√
(1− px)(1− pxy)

)n−1
For generic P (in particular, when all matrix entries get values in (0, 1)), this term is

strictly positive.

For any δ, we can find π∗ suffi ciently close to one such that
√

(1− π∗)/π∗ = δ2 < 1.

For any π > π∗, let
√

(1− π)/π = δ̂
2
where δ̂ < δ, and choose the ratio λL/λH to

be suffi ciently close to zero such that the R.H.S of (12) is arbitrarily close to δ̂
2
, and

therefore below δ, thus violating (12).

(ii) Let us now obtain a different lower bound on S. Once again, we use the fact

that S decreases with the informativeness of the signal given by the network. For

fixed n and π, this informativeness is maximal under perfect homophily - i.e., when

px = py = 1 and pxy = 0. Assume perfect homophily, and consider an arbitrary node.

Conditional on this node’s type, if we learn whether it is linked to the other nodes,

we do not gain any additional information from learning the links among these other

nodes. The reason is that conditional on the node’s type, it is linked to another node

if and only if the two nodes’types are identical. Thus, knowing the node’s type and

its link status with all other nodes, we can entirely pin down the rest of the network.

Moreover, conditional on the node’s type, its link status with respect to some node is

independent of its link status with respect to another node.

It follows that the signal given by the network under perfect homophily is equivalent

to a collection of n− 1 conditionally independent signals: each signal generates a link

with probability π (1 − π) conditional on the original node’s type being x (y). By

Remark 2, the Bhattacharyya Coeffi cient for this network is thus(√
π(1− π) +

√
(1− π)π

)n−1
Since this expression is weakly lower than S, the following inequality is a necessary
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condition for the implementability of the optimal policy:

(√
4π(1− π)

)n−1
≤ (

λH
λL + λH

)

√
1− π
π

+ (
λL

λL + λH
)

√
π

1− π

By multiplying both sides of the inequality by
√
π/(1− π), we can rewrite it as follows:

2n−1π
n
2 (1− π)

n
2
−1 ≤ (

1

λL/λH + 1
) + (

λL/λH
λL/λH + 1

)(
π

1− π ) (14)

The inequality is binding for π = 1
2
. We wish to show that there exists π∗∗ suffi ciently

close to 1
2
with the property that for every π ∈ (1

2
, π∗∗) there exists τ ∗∗(π) such that

condition (14) is violated for every λL/λH < τ ∗∗(π). To show this, it suffi ces to

construct π∗∗ and τ ∗∗(π) such that for every π ∈ (1
2
, π∗∗) and λL/λH < τ ∗∗(π), the

derivative of the L.H.S of (14) with respect to π is strictly higher than the corresponding

derivative of the R.H.S.

The derivative of the L.H.S of (14) with respect to π is equal to

2n−1π
n
2
−1(1− π)

n
2
−2[

n

2
− π(n− 1)] (15)

which is positive if 1
2
< π < n

2(n−1) . Since the expression (15) equals 2 when π = 1
2
, it

is strictly above one when π is suffi ciently close to 1
2
.

The derivative of the R.H.S. of (14) with respect to π is equal to

(
λL/λH

λL/λH + 1
) · 1

(1− π)2

which, for all π ∈ (1
2
, 1), is positive and increasing in π and λL/λH . Given π ∈ (1

2
, π∗∗),

let τ ∗∗(π) be the solution to the equation

τ ∗∗(π)

τ ∗∗(π) + 1
· 1

(1− π)2
= 1

Hence, for any π ∈ (1
2
, π∗∗) and any λL/λH < τ ∗∗(π), the derivative with respect to π

of the L.H.S of (14) is strictly higher than the corresponding derivative of the R.H.S.

Thus, an intermediate type ratio is necessary for implementing the optimal policy

under the SBM (in the low λL/λH regime). The intuition behind the case of a large

type ratio (i.e., π close to 1) is simple. For generic P and fixed n, there is an upper

limit to the network’s informational content, which implies a positive lower bound

on the Bhattacharyya Coeffi cient. Moreover, this lower bound is independent of π.
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Therefore, a suffi ciently large π induces an adverse type-ratio factor that overweighs

whatever positive effect it may have on the informativeness factor.5

The case of a relatively symmetric type distribution (i.e., π close to 1
2
) is less obvious.

In this case, the network is very uninformative about the nodes’types. For example,

in the homophily case with high α and low β, with high probability the network will

consist of two fully connected components, yet they will tend to be similar in size and

it will be diffi cult to identify the type of consumers that belong to each component.

Thus, both S and (1 − π)/π will be close to one in the π → 1
2
regime, and it is not

clear a priori which effect is stronger. However, it turns out that when π is close to 1
2
,

the type-ratio effect due to changing π overweighs the informativeness effect.

In Example 2, we saw that when n = 3, implementing the first-best is impossible for

most values of π, even though the SBM was maximally informative given the network

size. This raises the question of whether increasing n would help implementing the

first-best. The following result gives a positive answer.

Proposition 5 Fix a generic (π, P ). There exists n∗ such that the optimal policy is

implementable for all SBMs (n, π, P ) with n > n∗.

Proof. Fix an arbitrary node i. Suppose that we were given a signal that only describes
whether there is a link between i and some given node j 6= i. The probability of a link

conditional on ti = x is ηx = πpx + (1−π)pxy, and the probability of a link conditional

on ti = y is ηy = πpxy + (1 − π)py. Therefore, the Bhattacharyya Coeffi cient that

corresponds to this signal is

√
ηxηy +

√
(1− ηx)(1− ηy) (16)

Now suppose that we are given a signal that describes whether there is a link between

i and each of the other n− 1 nodes. Since the probability of such a link is independent

across all j 6= i conditional on ti, Remark 2 implies that the Bhattacharyya Coeffi cient

that corresponds to this signal is

[
√
ηxηy +

√
(1− ηx)(1− ηy)]n−1 (17)

Now, observe that this signal is weakly less informative than learning the entire network

w. Therefore, S is weakly below the expression (17). It follows that the following

5This result does not contradict Example 2, because perfect homophily is not generic. Slight per-
turbation of the connectivity matrix in Example 2 would lead to non-implementability for suffi ciently
large π.
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inequality is a suffi cient condition for the implementability of the optimal policy:

[
√
ηxηy +

√
(1− ηx)(1− ηy)]n−1 ≤ (

1

λL/λH + 1
)

√
1− π
π

+ (
λL/λH

λL/λH + 1
)

√
π

1− π (18)

For generic (π, P ), ηx 6= ηy, such that
√
ηxηy +

√
(1− ηx)(1− ηy) < 1. In addition,

for any (π, λL, λH) that satisfy (9), the R.H.S. of (18) is bounded away from zero.

Therefore, there exists n∗ such that the inequality holds for every n > n∗.

Thus, for a large enough network, incentive compatibility does not constrain im-

plementing the optimal policy. The proof involves a simple “law of large numbers”

argument. For illustration, consider the extreme case of perfect homophily, where

α = 1 and β = 0. Then, any realized network consists of two fully connected com-

ponents. When n is large, the probability that the larger component consists of x

consumers is close to one. As n → ∞, the network becomes arbitrarily informative,
such that S becomes arbitrarily close to zero, and the condition for implementability

of the optimal policy is satisfied.

To get a quantitative sense of Proposition 5, consider the following table, which

provides values of n∗ for various specifications of the homophily case:

π α β λL/λH n∗

0.6 0.1 0.05 0 1, 124

0.6 0.1 0.02 0 356

0.75 0.1 0.05 0 485

0.75 0.1 0.02 0 151

0.6 0.01 0.005 0 12, 060

0.6 0.01 0.002 0 3, 762

0.999 0.1 0.05 0 748

0.75 0.1 0.05 0.2 231

0.75 0.1 0.02 0.2 72

This table illustrates the forces that affect implementability of the optimal policy, via

their effect on (16) - the Bhattacharyya Coeffi cient of a signal that indicates whether

there is a link between two given nodes (as n∗ is based on this quantity).

Up to now we assumed that the likelihood of forming links does not change as

we increase the network size. Thus, the expected degree of a node was linear in n.

However, in the context of social networks, it makes sense to assume that the average

number of links that a node forms grows at a slower rate than the network size. As a
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result, the network will become sparser as it grows larger. In this case, it is not clear

whether a larger network will be more informative than a smaller one, and therefore it

is not clear whether the optimal policy will be easier to implement.

To address this question, we turn to a literature within Network Science known

as community detection (see Mossel et al. (2012), Abbe and Sandon (2015), and the

references therein). The objective in this literature is to identify with high probability

the types of nodes in a given network, under the assumption that the network was

generated by a known SBM. The literature looks for conditions on the SBM parameters

that are necessary and suffi cient for identifying node types and for implementing the

identification with computationally effi cient algorithms. These conditions capture the

extent to which the network is informative about node types. Because this is also

a crucial consideration in our model, the community-detection literature allows us to

obtain simple suffi cient conditions for implementability of the optimal policy if the

network-formation process obeys an SBM.

Following the practice in the community detection literature, assume that the ex-

pected degree of a node grows logarithmically with n. Specifically, we assume that the

connectivity matrix P depends on n, such that

px = a2
ln(n)

n
pxy = b2

ln(n)

n
py = c2

ln(n)

n

where a, b, c are arbitrary constants. To derive a suffi cient condition for implementabil-

ity of the optimal policy, we borrow existing necessary and suffi cient conditions for

(asymptotic) exact recovery of two asymmetric “communities”. By exact recovery, we

mean that for a given large network, there exists an algorithm that can identify the

type of each node with a probability arbitrarily close to one. If exact recovery is fea-

sible, then the network is almost perfectly informative. This implies that S is close to

zero and therefore the condition for implementability of the optimal policy holds.

Proposition 6 In the n→∞ limit, the optimal policy is implementable whenever

π(a− b)2 + (1− π)(c− b)2 ≥ 2 (19)

Proof. By definition,

S =
1√

π(1− π)

∑
w∈W

µ(w)
√
µ(x|w)µ(y|w)

Exact recovery means that the probability (measured according to µ) of realizations w
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for which µ(x|w) or µ(y|w) are arbitrarily close to zero is arbitrarily high. Therefore,

exact recovery is ensured if S → 0 when n→∞.
Let n → ∞. Given the preceding paragraph, we only need to derive a suffi cient

condition for exact recovery. By Abbe and Sandon (2015), such a network is exactly

recoverable if and only if

max
r∈[0,1]

{
r[πa2 + (1− π)b2] + (1− r)[πb2 + (1− π)c2]− πa2rb2(1−r) − (1− π)b2rc2(1−r)

}
≥ 1

A suffi cient condition for this inequality to hold is that the maximand of the L.H.S is

weakly greater than one for r = 1
2
- i.e., if

π(
a2 + b2

2
) + (1− π)(

c2 + b2

2
)− π(ab)− (1− π)(cb) ≥ 1

which is equivalent to (19).

Note that in the homophily case we have a = c, whereas the extroversion/introversion

case satisfies b =
√
ac. Thus, Proposition 6 implies the following.

Corollary 1 In the n→∞ limit, the optimal policy is implementable in the homophily

case whenever

(a− b)2 ≥ 2

whereas in the extroversion/introversion case, the optimal policy is implementable when-

ever

(πa+ (1− π)c)(
√
a−
√
c)2 ≥ 2

Thus, when connectivity increases logarithmically with network size, a suffi cient condi-

tion for implementability of the optimal policy for a large network is that the homophily

or extroversion/introversion effects are strong enough.

6 Partially Informed Advertisers

So far, we assumed that advertisers are entirely uninformed of the realization of w.

Relaxing this assumption raises a natural question: can the platform benefit from

releasing information to the advertisers? Our first result in this section is a negative

answer to this question. This finding then raises an immediate follow-up question:

when advertisers can partially retrieve the platform’s information, how much can they

learn without destroying the platform’s ability to implement the optimal policy?
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To address the first question, suppose that before an advertiser submits its report

to the platform, it receives a signal s regarding the realization of w. The signal is

independent of (t1, ..., tn) conditional on w. Let r be the joint distribution over the

platform’s signal w and the advertiser’s signal s. We allow the advertisers’signals to

be correlated conditional on w. The platform does not observe the advertisers’signals.

For instance, w is a social network and the advertiser learns the subgraph induced by

w over some specific subset of nodes.

We extend the incentive-compatibility requirement such that it needs to hold for

every realization of s. In principle, because an advertiser’s type now consists of both its

product type and its information, one would like the pair (q, F ) to condition on both.

In other words, theoretically advertisers need to report both components of their type.

However, because the optimal display rule is only a function of advertisers’product

types, it is easy to show that the platform’s ability to implement the optimal policy

is unaffected if it also requires advertisers to report their signal. Therefore, we will

continue to assume that advertisers only report their product type, and this report is

the only input that feeds (q, F ). Then, the original IC constraints (10) are exactly the

same, except that the term µ(w) is replaced with r(w|s). We require advertisers’IR
constraint to bind ex-ante - i.e., on average across their signal realizations.

It follows that in the m → ∞ limit, the necessary and suffi cient condition for

implementability of the optimal policy can be written as follows. For every realization

of s and every t, t′ ∈ {x, y},∑
w∈W

r(w|s)
∑
i∈N

qi(t|w)[ρi(t|w)− ρi(t′|w)] ≤ 0 (20)

By Blackwell’s ranking of information systems, r′ is less informative than r if there is

a system of conditional probabilities (p(s|s′))s,s′ , such that for every w, s,

r′(s|w) =
∑
s′

p(s|s′)r(s′|w)

The following result establishes that the platform benefits fromwithholding information

from advertisers.

Proposition 7 (i) If the optimal policy is implementable under r, then it is imple-
mentable under any r′ that is less informative than r. (ii) Suppose there exists a signal

w∗ such that wi = wj for all consumers i, j, and µi(x|w∗) 6= 1
2
. Then, if advertisers

are fully informed of the platform’s signal (i.e., r(w|w) = 1 for every w), the optimal

29



policy is not implementable when λL/λH is suffi ciently small.

The reason why withholding information about w from advertisers cannot harm

the platform is standard - it means that IC constraints that previously held for all

signals are now required to hold only on average. Part (ii) of the result establishes

that this monotonicity result is not vacuous: giving advertisers full information about

the platform’s signal will prevent it from implementing its optimal policy when λL/λH
is small. This part is based on a very mild condition on µ - namely, that there is a

perfectly symmetric w that does not induce a uniform posterior. All the examples we

consider in this paper satisfy this condition.

Suppose that the platform cannot prevent advertisers from learning part of its

own signal; how much information can it afford to give away? In the remainder of

this section, we analyze this question in the context of the social network application.

In particular, consider an SBM and assume that each advertiser gets information by

sampling a random subset of no more than d nodes (out of the total of n nodes in the

network), and learning the subgraph of w over these d nodes. Recall that w is realized

according to a given SBM. Hence, the Bhattacharyya Coeffi cient can be defined for

any subgraph of w consisting of k nodes, k = 1, ..., n (where the connectivity matrix is

fixed). Denote this coeffi cient by S(k).

Proposition 8 Suppose each advertiser is informed of the subgraph induced by w over
a random subset of at most d nodes. If

S(n− d) ≤ [
λH

λL + λH

√
π

1− π +
λL

λL + λH

√
1− π
π

]− [
d

n− d ·
√

2− 1

2
√
π(1− π)

] (21)

then the optimal policy is implementable.

Proof. Suppose an advertiser learns the subgraph of w over some subset of nodes N1
(the size of which is n1). We can represent w as a triple (g1, g2, h), where g1 is the

subgraph that the advertiser learns, g2 is the subgraph induced by w over the remaining

set of nodes N2 = N −N1 (the size of which is n2), and h consists of all links between
a node in N1 and a node in N2. Because w is generated by an SBM and g1 and g2 are

defined over disjoint sets of nodes, g1 and g2 are independently distributed.

The necessary and suffi cient condition for implementability of the optimal policy is
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that for every signal g1,∑
g2,h

µ(g2, h|g1)
∑
i∈N

√
µi(x|g1, g2, h)µi(y|g1, g2, h) (22)

≤
∑
g2,h

µ(g2, h|g1)
∑
i∈N

[
(

λH
λH+λL

)µi(y|g1, g2, h) + (
λL

λH + λL
)µi(x|g1, g2, h)

]

and ∑
g2,h

µ(g2, h|g1)
∑
i∈N

√
µi(x|g1, g2, h)µi(y|g1, g2, h) (23)

≤
∑
g2,h

µ(g2, h|g1)
∑
i∈N

[
(

λH
λH + λL

)µi(x|g
1

, g2, h) + (
λL

λH + λL
)µi(y|g1, g2, h)

]

(These expressions are easily derived from the inequality (25) given at the beginning

of the proof of Proposition 1 - see the Appendix.)

Since g1 and g2 are independent, we can write µ(g2, h|g1) = µ(g2)µ(h|g1, g2). Also,
observe that µi(x|g1, g2) =

∑
h µ(h|g1, g2)µi(x|g1, g2, h). Applying the Cauchy-Schwartz

inequality, we obtain√
µi(x|g1, g2)µi(y|g1, g2) ≥

∑
h

µ(h|g1, g2)
√
µi(x|g1, g2, h)µi(y|g1, g2, h)

It follows that inequalities (22)-(23) are implied by the following, simpler inequalities:

∑
i∈N

[∑
g2

µ(g2)
√
µi(x|g1, g2)µi(y|g1, g2)− (

λH
λH + λL

)µi(y|g1)− (
λL

λH + λL
)µi(x|g1)

]
≤ 0

∑
i∈N

[∑
g2

µ(g2)
√
µi(x|g1, g2)µi(y|g1, g2)− (

λH
λH + λL

)µi(x|g1)− (
λL

λH + λL
)µi(y|g1)

]
≤ 0

Consider the top inequality (it will be easy to see that if it holds, the bottom inequality

holds as well). We can break the summation over i ∈ N into two summations over N1
andN2. Because g1 and g2 are independent, for every i ∈ N1 we can write µi(x|g1, g2) =

µi(x|g1). Similarly, for every i ∈ N2 we can write µi(x|g1, g2) = µi(x|g2) and µi(x|g1) =
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µi(x) = π. It follows that the inequality can be rewritten as

∑
i∈N2

[∑
g2

(
µ(g2)

√
µi(x|g2)µi(y|g2)− (

λH
λH+λL

)µi(x|g1)− (
λL

λH+λL
)µi(y|g1)

)]
+

∑
i∈N1

[∑
g2

(
µ(g2)

√
µi(x|g1)µi(y|g1)− (

λH
λH+λL

)µi(x|g1)− (
λL

λH+λL
)µi(y|g1)

)]
≤ 0

The top sum can be simplified into

n2S(n2)
√
π(1− π)− n2(

λH
λH+λL

)π − n2(
λL

λH+λL
)(1− π)

while the bottom sum can be grouped together as

∑
i∈N1

[√
µi(x|g1)µi(y|g1)− (

λH
λH+λL

)µi(x|g1)− (
λL

λH+λL
)µi(y|g1)

]
≤ n1 · max

χ∈{0,1}
max
ϕ∈[0,1]

[√
ϕ(1− ϕ)− χϕ− (1− χ)(1− ϕ)

]
= n1 ·

√
2− 1

2

Plugging this term and exploiting the assumption that π > 1
2
, we can now obtain the

following suffi cient condition for implementability of the optimal policy:

n2

[
S(n2)

√
π(1− π)− (

λH
λH+λL

)π − (
λL

λH+λL
)(1− π)

]
+ n1

√
2− 1

2
≤ 0 (24)

Substituting d for n1 and n− d for n2 yields the desired condition.

Note that the term in the first bracket on the R.H.S. of (21) is precisely the R.H.S. of

(12), the necessary and suffi cient condition for implementing the optimal policy, while

the term in the second bracket is some positive constant that increases in d. Thus,

condition (21) says that the optimal policy is implementable even when advertisers

observe a subgraph of the network - as long as the informativeness of the subgraph they

do not observe is suffi ciently above the threshold for implementability. This reflects

the fact that it is harder to implement the optimal policy when advertisers have some

knowledge of the network.

When π and the connectivity matrix are fixed, inequality (21) is stated entirely

in terms of d and n. We can therefore express S(n − d) as a function of d, and use
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the upper bounds on S(k) that we derived in Section 5 to get a closed-form upper

bound on d, such that the optimal policy is implementable for any value of d below

that bound. Finally, the comparative statics with respect to d are consistent with

our previous results. When d increases, the R.H.S of (21) clearly goes down, whereas

S(n− d) goes up because a smaller network is a less informative signal. Thus, a larger

d makes is more diffi cult to satisfy the suffi cient condition.

Appendix: Omitted Proofs
Proposition 1
From (9), it follows that (7) characterizes the optimal display policy. Plugging this

expression for qi(t|w) into the IC(x, y) constraint (10) yields the following inequality∑
i∈N

∑
w∈W

µ(w) ·
√
µi(x|w)µi(y|w) (25)

≤
∑
i∈N

∑
w∈W

µ(w) · [( λH
λL + λH

)µi(y|w) + (
λL

λL + λH
)µi(x|w)]

Note that µ(w)µi(t|w) = µi(t, w) and
∑

w∈W µi(x,w) = π. The above inequality can

thus be rewritten as∑
i∈N

∑
w∈W

√
µi(x,w)µi(y, w) ≤ n(

λH
λL + λH

)(1− π) + n(
λL

λL + λH
)π (26)

Because µi(x,w) = πµi(w|x) and µi(y, w) = (1−π)µi(w|y), we can express (26) as the

following inequality,

∑
i∈N

∑
w∈W

√
µi(w|x)µi(w|y) ≤ n(

λH
λL + λH

)

√
1− π
π

+ n(
λL

λL + λH
)

√
π

1− π

By the ex-ante symmetry of nodes, the L.H.S. of the above inequality is simply nS, so

that this inequality reduces to

S ≤ λH
λL + λH

√
1− π
π

+
λL

λL + λH

√
π

1− π (27)

If we carry out a similar exercise for IC(y, x), we obtain the inequality

S ≤ λH
λL + λH

√
π

1− π +
λL

λL + λH

√
1− π
π
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By assumption, π ≥ 1
2
. And since λH > λL, the only inequality that matters is (27),

which is precisely the condition (12).

Proposition 7
(i) The proof is entirely rudimentary and standard. Nevertheless, we give it for com-

pleteness. By assumption, inequality (20) holds for every s. Using the definition of

Blackwell informativeness, we can rewrite r′(w|s) as

=
µ(w)

r′(s)
r′(s|w) =

µ(w)

r′(s)

∑
s′

p(s|s′)r(s′|w)

=
µ(w)

r′(s)

∑
s′

p(s|s′)r(s
′)r(w|s′)
µ(w)

=
∑
s′

p(s|s′)r(s′)
r′(s)

r(w|s′)

where r(s′) is the ex-ante probability of the signal s′ under r, and r′(s) is the ex-ante

probability of the signal s under r′. Now, elaborate the term

p(s|s′)r(s′)
r′(s)

=

∑
w µ(w)p(s|s′)r(s′|w)∑

s′′
∑

w µ(w)p(s|s′′)r(s′′|w)

We can easily see that this term is between 0 and 1, and that

∑
s′

p(s|s′)r(s′)
r′(s)

= 1

It follows that for every s, r′(w|s) is some convex combination of (r(w′|s))w′ . Therefore,
given that under r, (20) holds for every s, it must hold under r′ as well.

(ii) Suppose that advertisers are fully informed of the realization of w. Then, the

necessary and suffi cient conditions for implementability of the optimal policy are that

for every w,

∑
i∈N

√
µi(x|w)µi(y|w) ≤

∑
i∈N

[
λH

λL + λH
µi(y|w) +

λL
λL + λH

µi(x|w)

]
∑
i∈N

√
µi(x|w)µi(y|w) ≤

∑
i∈N

[
λH

λL + λH
µi(x|w) +

λL
λL + λH

µi(y|w)

]

By assumption, there is a perfectly symmetric signal w∗. Therefore, µi(x|w∗) is the
same for all i ∈ N , such that we can remove the subscript i and the summation over i
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from both inequalities. The inequalities then reduce to

1 ≤ (
1

λL/λH + 1
)

√
µ(y|w∗)
µ(x|w∗) + (

λL/λH
λL/λH + 1

)

√
µ(y|w∗)
µ(x|w∗) (28)

1 ≤ (
1

λL/λH + 1
)

√
µ(x|w∗)
µ(y|w∗) + (

λL/λH
λL/λH + 1

)

√
µ(x|w∗)
µ(y|w∗) (29)

Because µ(x|w∗) 6= 1
2
, either µ(x|w∗) > µ(y|w∗) or µ(x|w∗) > µ(y|w∗). Assume the

former, without loss of generality. Since inequality (29) is violated for λL/λH = 0,

there exists λ∗L/λ
∗
H > 0 such that this inequality would also be violated for all λL/λH <

λ∗L/λ
∗
H .
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