Health Insurance Market Design Lecture in Honor of Prof. Guideon Fishelson, Tel Aviv University, November 28 2017

Igal Hendel (Northwestern University)

- Lots of interest has focused on creation and regulation of health insurance markets (exchanges)
 - Affordable Care Act (ACA) in United States (2010)
 - Netherlands (2006), Switzerland (1996), Private market in Germany
 - Private employer exchanges US
- This type of regulated insurance market, termed managed competition, characterized by:
 - Annual policies (in most cases)
 - "Free entry" of insurers
 - Pre-specified financial coverage levels plans can offer (60%, 70%, 80%, 90% in U.S.)
 - Minimum coverage (health conditions included)
 - Restrictions on pricing pre-existing conditions, demographics

・何ト ・ヨト ・ヨト

- Ongoing work in US congress replacing the ACA
 - proposals by different Republicans in Congress
 - Better Way: Paul Ryan, Patient Care Act: Orrin Hatch, Empowering Patients First Act: Thomas Price, Health Care Choice Act: Ted Cruz, Healthcare Accessibility, Empowerment, and Liberty Act: William Cassidy and Peter Sessions
- All proposals include repealing participation mandate
 - mandate intended to prevent market unravelling
 - already scrutinized by Supreme Court
 - but perceived as infringing freedom
- Some proposals remove ban on pricing of pre-existing conditions

- Universal Health Care: all citizens covered
 - Origins in 19th century, took off in Europe after WWII
 - Enforced by mandate and/or free access
 - Tied to: health care perceived as a right (and affordable)
- Single-payer Health Care: government pays costs
 - Delivery of care may or may not be by government
 - Tax funded vs employees and employers' contributions
- Exchange design useful when care is not fully delivered by the government
 - even then there is a role

Why study exchanges?

The U.S. History

- Individual hospitals started offering services on a pre-paid basis, as precursors to Blue Cross organizations in the 30s
- Roosevelt Admin while designing Social Security also considered national health program
 - plan dropped, among others opposition by American Medical Association (AMA)
- Post WWII, under wage controls, health insurance used as perk to attract workers
- 1945 Truman proposes public health insurance, opposed by AMA and AHA, as socialism
- 1965 LB Johnson signs Medicare and Medicaid laws
- 70s Nixon proposes mandate and incentives for employers
- 90s Clinton proposal: mandates and subsidies, stopped by 1994 Republican take-over of Congress
- 21st century: Obamacare vs Repeal and replace..

- Despite many attempts, as Bernie Sanders put it during presidential campaign:
 - "We still have 35 million Americans without insurance."
 - "We are the only major country on Earth that doesn't guarantee health care to all people as a right."

- Why the lack of support for universal care in the U.S.?
 - History dependence: good share of population well served by employer provided health insurance
 - Tax benefits of employer provider coverage: increase the cost the alternative
 - Universal coverage requires either:
 - mandate to purchase: infringes freedom (anti-constitutional): freedom collides with long term insurance (more later)
 - free coverage generates backlash: suspicion of large government ("keep the government out of my Medicare"), access requires costly redistribution

- Market design (rules) needed to contend with two potential problems:
- or two risks: i. medical costs given type, ii. type (conditions)
- Risk 1: Adverse section (AS)
 - if charged average premiums, healthy individuals may opt out, leading to premium increase...
 - standard Akerlof lemons inefficiency (market may even collapse)
- Risk 2: Reclassification risk (RR)
 - if health conditions priced
 - individuals face risk of changing health type
 - · leading to potentially high premiums at bad times

- Tension between: AS and RR
- AS can be contended with by pricing of health condition
 - individualized prices (rather than average) can eliminate adverse selection
 - less adverse selection, implies more trade, higher welfare
- But pricing health conditions leads to more premium uncertainty
 - exacerbating RR, lowers welfare
- Relates to notion of insurance
 - two risks

- Market rules dictate extent of these concerns
- The Affordable Care Act (ACA) went to one extreme
 - banning pricing of health conditions, eliminating RR
- The potential costs of the ban is AS, in terms of:
 - low participation (mitigated by mandate) or
 - (if mandate effective) underinsurance (low coverage)
- Since pricing rules affect AS vs RR trade-off
- Policy question: how costly are AS and RR?
 - where in that trade-off is welfare highest?
 - answer depends on: preferences toward risk and transitions across health types (costs) over time

- Most regulations stipulate one-year contracts
- Longer contracts, as in private German and Chilean HI markets, might improve welfare
- Long-term contracts might:
 - eliminating AS through health based pricing
 - while insuring RR through commitment to future policy terms
- Policy question: are long term contracts welfare improving?
 - answer depends on: preferences toward risk and transitions across health types (costs) over time

- All Republican proposals eliminate the mandate
 - there is no penalty for not participating
- Instead they propose:
 - penalties while returning to the market
 - House of Representatives bill: 30% penalty for non-continuous coverage
 - Senate bill penalizes with 6 months exclusion when back
- Both alternatives, to enhance participation, create dynamics:
 - although contracts are yearly
 - current consumer behavior affects future payoffs
 - thus, finding demand and equilibrium, entails a DP problem
- Policy question: which type of penalties performs better?
 - answer depends on: preferences toward risk and transitions across health types (costs) over time

• One can simulate equilibria and compute welfare, in all 3 set -ups:

- one period contracts with different pricing rules
- one period contracts with rules generating demand dynamics
- long term contracts
- Data needed:
 - distribution of health types ("health state")
 - distribution of costs given types
 - health state transitions (from year to year)
 - preferences toward risk (parameter)

- Individual-level panel: provided by large employer (10k emp/25k covered lives) from 2004-2009
 - Plan choices, plan characteristics and consumer demographics
 - Medical claims data (ICD-9 codes) for every person covered in PPO (65%)
 - medical claims reflect health realizations
- Leveraged with: Adjusted Clinical Group (ACG) program:
 - software developed by Johns Hopkins Medical School
 - provides risk score conditional on previous medical claims (ICD-9 codes) and demographics
 - used by insurers for underwriting
 - ullet \Longrightarrow we have access to the same information insurers do

- We treat the large employer as the *population* in the exchange
- Having an ACG score for each person, we basically *observe* distribution of risk types
 - the distribution of types is data, rather than estimated
- Use ACG changes over time to estimate health transitions
- Estimate distribution of realized medical costs given ACG
 - reflects uncertainty faced by each type
- Risk preferences
 - Choice Model in Handel, Hendel, Whinston (2015)
 - Comparable choices in the literature: Collier et al. (2017)

From the Data to Market Simulations

• For each person in population we know:

• risk type (ACG)

Ingredients

- estimated risk preference (CARA parameter)
- estimated distribution of costs given ACG (uncertainty faced)
- With: type, uncertainty and risk preferences
 - compute expected utility from an insurance **policy** with Actuarial Value (**AV**) *x*: *EU*_{*x*}(*ACG*)
- Knowing expected utility, we get willingness to pay for any level of coverage as:
 - e.g., WTP for a 60% policy is: $\theta_{60} = EU_{60}(ACG) EU_0(ACG)$
- Compute WTP for every person in the population (given their ACG and age)
 - which represents demand for such policy

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Final product is a population, with $\boldsymbol{\theta}$ for every person and policy of interest
 - treats insurance policy as a financial asset
- Distribution of θ determines:
 - demand
 - costs (given premiums)
- With WTP of every person in population we can simulate
 - static contracts
 - long term contracts
 - dynamic consumer behavior

	Sample Total Health Expenditure Statistics									
Ages	Mean	S. D.	S. D. of ACG	S. D. around ACG						
All	6,099	13,859	6,798	9,228						
25-30	3,112	9,069	4,918	5,017						
30-35	3,766	10,186	5,473	5,806						
35-40	4,219	10,753	5,304	6,751						
40-45	5,076	12,008	5,942	7,789						
45-50	6,370	14,095	6,874	9,670						
50-55	7,394	15,315	7,116	11,092						
55-60	9,175	17,165	7,414	13,393						
60-65	10,236	18,057	7,619	14,366						

(日) (同) (三) (三)

AGE:	Health States:									
	1	2	3	4	5	6	7			
25-30	0.49	0.19	0.14	0.07	0.04	0.03	0.04			
30-35	0.41	0.18	0.13	0.08	0.06	0.06	0.07			
35-40	0.27	0.30	0.13	0.06	0.09	0.07	0.09			
40-45	0.19	0.28	0.16	0.09	0.12	0.08	0.10			
45-50	0.01	0.15	0.32	0.15	0.13	0.12	0.12			
50-55	0.00	0.10	0.25	0.19	0.15	0.16	0.15			
55-60	0.00	0.01	0.01	0.25	0.24	0.28	0.22			
60-65	0.00	0.00	0.00	0.18	0.24	0.26	0.31			

イロト イ団ト イヨト イヨト

					λ_{t+1}			
		1	2	3	4	5	6	7
	$\lambda_t = 1$	0.72	0.13	0.05	0.05	0.02	0.01	0.03
	$\lambda_t = 2$	0.35	0.25	0.12	0.11	0.04	0.03	0.11
λ_t	$\lambda_t = 3$	0.15	0.23	0.19	0.15	0.10	0.08	0.10
	$\lambda_t = 4$	0.20	0.08	0.12	0.24	0.18	0.12	0.08
	$\lambda_t = 5$	0.10	0.10	0.05	0.20	0.20	0.20	0.15
	$\lambda_t = 6$	0.16	0.11	0.14	0.11	0.08	0.22	0.19
	$\lambda_t = 7$	0.11	0.11	0.07	0.04	0.11	0.20	0.37

< ロト < 同ト < ヨト < ヨト

					λ_{t+1}			
		1	2	3	4	5	6	7
	$\lambda_t = 1$	0.67	0.15	0.10	0.02	0.02	0.01	0.03
	$\lambda_t = 2$	0.25	0.37	0.20	0.09	0.04	0.02	0.04
λ_t	$\lambda_t = 3$	0.09	0.21	0.21	0.20	0.12	0.10	0.08
	$\lambda_t = 4$	0.10	0.19	0.26	0.12	0.10	0.19	0.05
	$\lambda_t = 5$	0.09	0.19	0.14	0.15	0.10	0.19	0.15
	$\lambda_t = 6$	0.00	0.09	0.13	0.09	0.19	0.23	0.28
	$\lambda_t = 7$	0.03	0.10	0.10	0.10	0.21	0.16	0.29

< ロト < 同ト < ヨト < ヨト

Health State Persistence starting at age 30

Igal Hendel (Northwestern University) () Health Insurance Market Design

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We need a solution concept to predict outcomes under different market rules
- For example, in the context of static contracts we used Riley equilibrium
 - think of breaking-even premiums
- In the context of long term contracts, we find competitive equilibria
 - optimal contracts subject to break even and lapsation constraints

PART I

One-period Contracts: Pricing Rules

イロト イポト イヨト イヨト

- We find that markets fully unravel if only age is priced
 - like in the ACA
- We estimated: cost of AS (namely, of underinsurance) under Obamacare (ACA) is about \$600 per person/year
- If health conditions are priced
 - trade increases, some individuals get high level of coverage (90% Actuarial Value)
 - so AS is reduced (but in a very limited way)
- Downside: premiums become uncertain (over time), creating RR
 - although AS is reduced, welfare declines as more conditional priced
 - we find the risk associated with uncertain premium is a lot more costly
- Take away: ACA did well banning pricing of health conditions
 - less costly to suffer AS than RR

Part I: One-Period Contracts

Handel, Hendel and Whinston (2015)

	Q1	Q2	Q3	Q4
Ages	Share 90	Share 90	Share 90	Share 90
All	35.2	0	0	0
25-29	63	25	0	0
30-34	63	42	0	0
35-39	52	50	0	0
40-44	38	0	0	0
45-49	63	18	0	0
50-54	27	0	0	0
55-59	33	0	0	0
60-65	0	0	0	0

Igal Hendel (Northwestern University) ()

26 / 51

PART II

One-period contracts: Republican's Reform

ヨト イヨト

• Ghili, Hendel and Whinston (2017) go back to static contracts

- firms offer one-period contracts
- with no pricing of health conditions
- but penalties for lack of continuous coverage
- Simulate:
 - House of Representatives proposal: 30% premium increase for returning buyers
 - Senate proposal: 6 months without coverage, $EU_0(ACG)$

• Unlike the mandate, both options generate consumer dynamics

Part II: Consumer Problem

- Given a vector of premiums $\mathbf{p} = \{p_a\}$ for ages a = 25, ..., 64.
- The value for an age *a* consumer with current type λ (ACG) is:

$$\begin{aligned} V_{a}(\lambda,\gamma,0|\mathbf{p}) &= \max\{ E_{0}(u_{\gamma}(c)|\lambda) - \phi_{0} + \beta E(V_{a+1}(\lambda',\gamma,0|\mathbf{p})|\lambda) , \\ E_{H}(u_{\gamma}(c)|\lambda) - p_{a} - \phi_{R} + \beta E(V_{a+1}(\lambda',\gamma,1|\mathbf{p})|\lambda) \} \end{aligned}$$

and

$$V_{a}(\lambda,\gamma,1|\mathbf{p}) = \max\{ E_{0}(u_{\gamma}(c)|\lambda) - \phi_{0} + \beta E(V_{a+1}(\lambda',\gamma,0|\mathbf{p})|\lambda) , \\ E_{H}(u_{\gamma}(c)|\lambda) - p_{a} + \beta E(V_{a+1}(\lambda',\gamma,1|\mathbf{p})|\lambda) \}$$

٥

- where $E(V_{a+1}(\lambda', \gamma, 1|\mathbf{p})|\lambda)$ is the expectation wrt future type λ' given current type λ .
- $\chi = 0$ means out of market, 1 = in.
- ϕ is the penalty for returning to the market ・ロト ・四ト ・ヨト ・ヨト

- For a given \mathbf{p} we find $V_{a}(\lambda,\chi|\mathbf{p})$
- $V_a(\lambda,\chi|\mathbf{p})$ and \mathbf{p} determine participation and insurer's cost for every a
- Update **p** such that insurers break for every *a*
- Update $V_{a}(\lambda,\chi|\mathbf{p})$ for new \mathbf{p}
- Iterate
 - not a contraction, need not converge, it did so far
- Equilibrium involves: consumers optimizing and firms breaking even

- 4 週 ト - 4 三 ト - 4 三 ト - -

	Static, pe	Static, penalty $=$		Senate
Age	\$0	\$400	30%	Year out
25 - 29	0.17	0.18	0.19	1.00
30 - 34	0.20	0.20	0.21	1.00
35 — 39	0.28	0.28	0.30	1.00
40 - 44	0.32	0.33	0.34	1.00
45 - 49	0.37	0.37	0.39	1.00
50 - 54	0.44	0.44	0.47	0.99
55 — 59	0.48	0.48	0.51	0.97
60 - 64	0.57	0.57	0.59	0.75

2

イロト イ団ト イヨト イヨト

PART III

Long-Term Contracts

æ

イロト イヨト イヨト イヨト

- Firms can offer long term contracts
 - like in German and Chilean private health insurance market, or US life insurance
- Consumers can lapse any time, without termination fees

• **Question:** Can long-term contracts with health status-based pricing improve upon static contracts?

Part III: Long Term contracts: One Sided Commitment Why one sided commitment?

- Legal reasons only one-sided feasible
- Why is it an interesting case?
 - first impression is that, when insurers can commit they will promise coverage to fully insure risk of developing a condition
 - solving reclassification risk concern
 - why wouldn't they fully insure risk averse buyers if they can commit to do so?
- Turns out: consumer inability to commit compromises insurance
 - we can see it in the simplest set-up in next figure

Simplest Example

One Sided Commitment: 2 periods, 2 (second period) states

Image: Image:

∃ ► < ∃ ►</p>

Welfare Impact of Long Term Contracts

We compare welfare under:

- Benchmark #1: the first-best (full insurance) = long-term contract with full commitment
- Benchmark #2: annual "spot" contracts with risk rating
- Long-term contracts with one-sided commitment and risk rating (Key assumption: consumer can lapse and can't borrow)
- Benchmark #3: full medical expense insurance at each age with no intertemporal consumption smoothing
- Annual contracts with community rating and age-based pricing (ACA-like market)

Three Benchmarks

• First best:

$$C^* = \left(\frac{1-\delta}{1-\delta^T}\right)\sum_{t=1}^T \delta^{t-1}(y_t - \mathbb{E}[m_t])$$

• Spot Contracting:

$$u(CE_{SPOT}) = \left(\frac{1-\delta}{1-\delta^{T}}\right) \mathbb{E}\left[\sum_{t=1}^{T} \delta^{t-1} u(y_t - \mathbb{E}[m_t|\lambda_t])\right]$$

• Full Insurance without Intertemporal Smoothing:

$$u(C_{NBNS}^*) = \left(\frac{1-\delta}{1-\delta^T}\right) \sum_{t=1}^T \delta^{t-1} u(y_t - \mathbb{E}[m_t]))$$

э

ヨト イヨト

• T periods, $U = \mathbb{E}\left[\sum_t \delta^t u(c_t)\right]$

• T = 40, from age 25 to 65 (Medicare)

- Individual income in period $t: y_t$
- Health state λ_t (ACG), summarizes expected health costs, $\mathbb{E}[m_t|\lambda_t]$
- Health expenses m_t and λ_{t+1} determined by density $f_t(m_t, \lambda_{t+1}|\lambda_t)$
 - the transitions just showed you
- Symmetric learning:
 - m_t and λ_t observed by consumers and firms
- We assume industry is competitive, firms risk neutral, discount factor δ , capital market frictions

Theorem

The equilibrium contract in a competitive market with one-sided commitment for a consumer with income path $y = (y_1, ..., y_T)$ and who cannot borrow is characterized by the consumption guarantees offered in the first period of a contract starting in period t with health state λ_t , $c_t^y(\lambda_t)$. The consumer who agrees to a contract in period 1 is fully insured against within-period medical expense risk, and enjoys in each period t following health state history $(\lambda_1, ..., \lambda_t)$ the certain consumption $\max_{\tau \leq t} c_{\tau}^y(\lambda_{\tau})$. The levels $\{c_t^y(\lambda_t)\}$ lead insurers to break even in expectation and consumers have no incentive to save under this contract.

イロト イポト イヨト イヨト

- Optimal contract offers a minimum guaranteed consumption level
- Guarantee is bumped up to match outside offers after good news
- New guaranteed consumption level is the first-period consumption of an optimal contract that would start at that date and state λ_t
- Optimal contracts equate u'(c) only across states with no outside offers (bad states)
- Consumption guarantee parallels downward rigid wages in Harris and Holmstrom (1982)

					λ_{t+1}			
		1	2	3	4	5	6	7
	$\lambda_t = 1$	0.72	0.13	0.05	0.05	0.02	0.01	0.03
	$\lambda_t = 2$	0.35	0.25	0.12	0.11	0.04	0.03	0.11
λ_t	$\lambda_t = 3$	0.15	0.23	0.19	0.15	0.10	0.08	0.10
	$\lambda_t = 4$	0.20	0.08	0.12	0.24	0.18	0.12	0.08
	$\lambda_t = 5$	0.10	0.10	0.05	0.20	0.20	0.20	0.15
	$\lambda_t = 6$	0.16	0.11	0.14	0.11	0.08	0.22	0.19
	$\lambda_t = 7$	0.11	0.11	0.07	0.04	0.11	0.20	0.37

< ロト < 同ト < ヨト < ヨト

Simulating Equilibrium Contracts and Welfare

- The key ingredients are: health status and transitions over time, risk preferences
- Age dependent annual transitions across a 7 health-state partition (using 5-year bins)
- We use estimated risk preferences from HHW (2015) choice model: CARA with population mean $\gamma_i=4.39*10^{-4}$
- $\delta = 0.975$

• With those parameters, find optimal contracts, and welfare

- "Flat net income" means $y_t \mathbb{E}[m_t]$ is constant
- Optimal premium in period t depends on history, from age 25 to t
- Many histories! (40 million in first 10 years)
- First period premiums and actuarial costs:

	First-Year Equilibrium Contract Terms: Flat Net Income											
		λ_1										
	1	2	3	4	5	6	7					
Premium	2,750	4,155	6,008	6,130	8,885	11,890	18,554					
Costs	1,131	2,291	3,780	3,975	5,850	10,655	18,554					
Front-Load	1,619	1,864	2,228	2,155	3,035	1,235	0					
$c_1^y(\lambda_1)$	52,550	51,145	49,292	49,170	46,415	43,410	36,746					

Results: Optimal Contract for Flat Net Income

Front-loading and Reclassification Risk

	Second-Year Equilibrium Premiums: Flat Net Income										
	λ_2										
λ_1	1	2	3	4	5	6	7				
1	2,943	3,300	3,300	3,300	3,300	3,300	3,300	2,750			
2	2,943	4,302	4,705	4,705	4,705	4,705	4,705	4,155			
3	2,943	4,302	6,090	6,206	6,558	6,558	6,558	6,008			
4	2,943	4,302	6,090	6,206	6,680	6,680	6,680	6,130			
5	2,943	4,302	6,090	6,206	8,955	9,434	9,434	8,885			
6	2,943	4,302	6,090	6,206	8,955	11,919	12,440	11,890			
7	2,943	4,302	6,090	6,206	8,955	11,919	18,554	18,554			

《曰》《聞》《臣》《臣》 [臣]

Results: Optimal Contract for Flat Net Income

Front-loading and Reclassification Risk

	Second-Year Equilibrium Consumptions: Flat Net Income										
	λ_2										
λ_1	1	2	3	4	5	6	7				
1	52,905	52,550	52,550	52,550	52,550	52,550	52,550	52,550			
2	52,905	51,545	51,145	51,145	51,145	51,145	51,145	51,145			
3	52,905	51,545	49,758	49,642	49,292	49,292	49,292	49,292			
4	52,905	51,545	49,758	49,642	49,170	49,170	49,170	49,170			
5	52,905	51,545	49,758	49,642	46,893	46,415	46,415	46,415			
6	52,905	51,545	49,758	49,642	46,893	43,929	43,410	43,410			
7	52,905	51,545	49,758	49,642	46,893	43,929	37,294	36,746			

Image: Image:

∃ ▶ ∢

- For each contracting scenario X and income profile we find a constant certainty equivalent *CE_X*
 - $C^* =$ first best (two-sided commitment)
 - $CE_{SPOT} = \text{spot} (\text{annual}) \text{ contracts}$
 - CE_D = dynamic contracts (one-sided commitment)
 - C^*_{NBNS} = full insurance within each period/no smothing over time
 - $CE_{ACA} = ACA$ (60% coverage policies with deductible and OOP max)
- Comparisons for:
 - (i) flat net income
 - (ii) non-managers
 - (iii) managers
 - (iv) downscaled managers

				Gains from Lor			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Income	С*	CE _{SPOT}	CED	C^*_{NBNS}	CE _{ACA}	$\frac{C^* - CE_{SPOT}}{C^*}$	$\frac{CE_D - C}{C^* - CE}$
Flat net	53.67	46.27	52.77	53.53	51.30	13.8%	87.7
Non-mngr	53.67	40.73	44.10	47.39	46.25	24.1%	26.0
Manager	84.00	50.32	51.77	56.08	55.09	40.1%	4.3
Downs Mngr	53.67	31.74	34.10	37.93	36.84	40.9%	10.8

• CE_D as expected is in between spot and two-sided contracts

- Less of the gap is closed with steeper income profiles $\left(\frac{CE_D CE_S}{CE_{\tau c} CE_c}\right)$
- TSNS always at least as good as D
- ACA better for steep profiles, worse for flat ones

	Certainty Equivalent							
Income	C^*_{NB}	CEs	CE_D	CE_{ACA}				
Flat-net	53.67	52.47	53.62	52.85				
Manager	47.20	46.41	46.94	46.80				

2

イロト イ団ト イヨト イヨト

Switching Cost	Flat-net	Manager
D	52.76	34.10
1,000	52.95	34.95
5,000	53.39	36.92
10,000	53.58	38.82
<i>C</i> *	53.67	37.93

イロト イヨト イヨト イヨト

- Dynamic contracts with one-sided commitment can substantially reduce reclassification risk
 - Eliminate between 18%-75% of welfare loss due to reclassification risk (with precautionary savings), depending on slope of income path
- In base model/parameters, ACA is better for rising income levels
- Dynamic contracts better than ACA with some combination of lower risk aversion, switching costs, and government insurance of pre-age 25 health risk

- Plenty can be simulated
- Treating health insurance policies as financial instruments
 - non-financial components can be accommodated
- Using data firms are increasingly willing to share (e.g., Alcoa, Microsoft)
- Ideally, governments would be willing to collect and share
- ACG software extremely useful
 - replacing parametric assumptions in prior literature with data
 - same data/information used by market participants