
Stochastic Growth with Short-run Prediction of Shocks

Santanu Roy�

Southern Methodist University.

Itzhak Zilchay

Tel Aviv University and Southern Methodist University.

March 10, 2012

February 2012

Abstract

We study a one sector stochastic growth model with independent and identically dis-
tributed shocks where agents acquire information that enables them to accurately predict
next period�s productivity shock (but not shocks in later periods). Optimal policy de-
pends on the forthcoming shock. We derive conditions under which a more productive
realization of the forthcoming shock increases or decreases current investment; relative
risk aversion and the elasticity of marginal product play important roles in these condi-
tions. A better shock always increases next period�s optimal output if it increases both
marginal and total product. We derive explicit solutions to the optimal policy function
for three well known families of production and utility functions. Volatility of output,
sensitivity of output to shocks and expected total invstment may be higher or lower than
in the standard stochastic growth model where no new information is acquired over time.
Under restrictions similar to that used in the standard model, optimal outputs converge
in distribution to a unique invariant distribution whose support is bounded away from
zero; the limiting distribution may di¤er from that obtained in the standard model.
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1 Introduction

Growth and capital accumulation in an economy are a¤ected by �uctuations that are exoge-
nous to economic decision makers. Models of stochastic growth attempt to take into account
these exogenous �uctuations, at least partially, in the form of aggregate technology shocks
that a¤ect the return from investment. In these models, economic agents make their current
consumption and investment decisions on the basis of a commonly known probability distrib-
ution of future technology shocks. While the sources of these exogenous shocks are often left
unspeci�ed, they are not necessarily external to society. To a signi�cant extent, they emanate
from institutional, political or natural environments in which the economy operates. Ex-
amples include �uctuations in agricultural productivity caused by meteorological variations,
changes in legal and regulatory systems that govern the conduct of business (for instance, the
diversion of entrepreneurial talent to rent seeking activities) and alter the cost of non-market
inputs1. Modern society is characterized by increasing �ow of information about these institu-
tional, political or natural factors that, in turn, enable economic agents to make much better
predictions about how these exogenous factors are likely to behave in the short run, though
they may continue to face high degree of uncertainty about shocks in the distant future. It
is important to understand how the economic incentives for capital accumulation respond to
better information about, and better prediction of, aggregate "shocks" in the near future, and
in particular, how this a¤ects macroeconomic aggregates in the process of economic growth.
This paper addresses these issues in a stochastic growth framework.

We consider a variation of the well known model of one sector stochastic optimal growth
(Brock and Mirman, 1972) that can also be interpreted as a model of decentralized "equilib-
rium growth" under technological uncertainty in a competitive representative agent economy.
As in much of the stochastic growth literature, we assume that the production shocks are
independent and identically distributed over time. In the received version of this model, con-
sumption and investment decisions are made in each period prior to the realization of the
production shock next period; the latter a¤ects the output resulting from current investment.
In our variation of this model, we assume that in each period, before making consumption
and investment decisions, agents acquire new information that enables them to predict the
realization of the shock next period. In order to bring out the e¤ect of short run predictability
in a stark fashion, we assume that the prediction is accurate, i.e., agents foresee correctly the
exact realization of next period�s shock. However, the information available does not a¤ect
the agents�beliefs about the probability distribution of shocks in later time periods. Thus, in
our model, though there is no uncertainty about next period�s return on investment, agents
remain uncertain about the production technology and therefore, the value of accumulation
in later periods.

Though the information structure in our model is a relatively minor modi�cation of that
in the standard optimal stochastic growth model, it creates major qualitative di¤erences to
the nature of optimal policy. In particular, optimal consumption and investment decisions
are now sensitive to the predicted realization of the forthcoming shock.

The main contributions of our paper are as follows. We characterize the sensitivity and
qualitative dependence of optimal decisions on the prediction of next period�s shock. In
particular, when the total and marginal productivity are ordered by the realized shock, we

1See, Hansen and Prescott (1993).
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examine the e¤ect of "better" shocks on optimal investment and next period�s output. While
next period�s output always increases with a better shock, investment may increase or decrease
with a better shock depending on the curvature of the optimal value function. For the case
of multiplicative shocks, we outline conditions on the utility and production functions that
ensures that investment increases or decreases with a better shock. Our results indicate that
investment increases (and consumption declines) with a better shock if the degree of relative
risk aversion and the elasticities of total and marginal product are above a critical level.

We derive explicit solutions to the optimal policy function for three well-known cases and
compare the outcomes of our model to the standard stochastic growth model. These explicit
solutions are not only used to illustrate certain qualitative properties, but are also likely to
be very useful in future macroeconomic applications.

Though availability of information about next period�s shock makes optimal investment
and consumption sensitive to the shock, it allows agents to absorb some of the variation in
shocks by adjusting their current consumption and investment. As a result, the transmission
of volatility of the shocks to next period�s output may be higher or lower compared to the
standard stochastic growth model. We show this in some speci�c examples where, depending
on parametric conditions, information about the forthcoming shock may magnify or dampen
output volatility. Also, depending on parameters, the expected total investment may be higher
or lower than in the standard model. Our analysis indicates that information about forth-
coming shocks increases the role of the utility function in determining the qualitative nature
of economic outcomes as well as comparative dynamics (relative to the standard stochastic
growth framework).

Finally, we show that despite the dependence of optimal actions on the forthcoming shock,
under very similar restrictions as in imposed in the standard stochastic growth model, the
stochastic process of optimal outputs converge in distribution to a unique invariant distrib-
ution whose support is bounded away from zero. This unique stochastic steady state itself
may, however, di¤er from that obtained in the standard model; even though the di¤erence
in information structure of the two models pertains only to the short run i.e., whether or
not one can predict the immediately forthcoming shock, di¤erences in the economic processes
generated may persist in the long run.

Our paper is related to several strands of the existing literature. First, there is a large
literature on models of real business cycles where cyclical �uctuations are related to imperfect
forecasting of future productivity shocks by agents that observe signals that are correlated
with future shocks. While the idea goes back to Pigou (1927), much of the literature is fairly
recent where the focus is on explaining speci�c features of observed cycles including booms and
recessions, persistence of macroeconomic aggregates and co-movement in output, investment
and consumption.2 The basic model used in this literature is the neoclassical stochastic
growth model and as in our paper, agents observe signals, albeit imperfect, of future shocks;
in fact, our structure can be seen as one where the signal about next period�s shock is fully
informative. However, there are signi�cant di¤erences. We do not seek to generate cycles
or explain any of the observed empirical regularities in the business cycles literature. Unlike
models of business cycles where shocks are serially correlated, we assume that productivity
shocks are i.i.d. over time. Our focus is on understanding capital accumulation and much of

2See, among others, important contributions by Danthine, Donaldson and Johnsen (1998), Beaudry and
Portier (2004, 2007), Schmitt-Grohe and Uribe (2008) and Jaimovich and Rebelo (2009),
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our analysis is carried out in a general framework.
The second strand of literature that relates to our paper is the one that analyzes ex-

perimentation and learning in a stochastic growth model3. In this literature, agents acquire
(actively or passively) signals over time that enable them to learn about unknown parameters
a¤ecting the production function or the distribution of shocks in a Bayesian fashion. Unlike
this literature, in our case there is no imperfect information about the structure of the econ-
omy; in particular, the initial condition, the production function and the distribution of the
i.i.d. shocks are fully known. The paper does not address the question of structural learning.
In our model, agents acquire new information that allows perfect prediction of the realization
of next period�s shock, but this does not, in any way, alter their posterior distribution of
shocks in later periods.

The third strand of literature related to our framework is the one that examines the
e¤ects of �better information�(Blackwell, 1953) on the behavior of economic agents and their
aggregate implications for dynamic equilibrium. In an overlapping generation model with
investment in human capital, Eckwert and Zilcha (2004) show that better information may
either enhance, or reduce, the aggregate stock of human capital along the equilibrium path,
depending on the risk aversion parameters. The motivation for our paper is best viewed
in terms of this e¤ect of better information that enables agents predict the realization of
economy-wide shocks in the short run future.

Finally, within the optimal stochastic growth literature, Donaldson and Mehra (1983)
analyze a general one sector model of stochastic growth with correlated shocks. In their
framework, past realizations of productivity shocks allow agents to update the posterior dis-
tribution of all future shocks. As mentioned earlier, shocks are independent in our framework
and previous shocks carry no information about future shocks.

The results in our paper have applications in other areas such as optimal management
of biological species (and other renewable resources) under uncertainty about their "natural
growth". In particular, it allows us to understand the implication of being able to correctly
forecast short run environmental conditions that cause �uctuations in the growth of popula-
tions of biological species.

Our paper is organized as follows. Section 2 describes the model and contains some basic
results on existence and policy functions. In Section 3, we outline three well-known families
of utility and production functions for which we explicitly derive analytical solutions to the
optimal investment and consumption policy. In Section 4, we analyze the monotonicity of out-
put, investment and consumption in (the predicted) realizations of forthcoming productivity
shock. Section 5 discusses the e¤ect of information about forthcoming productivity shocks
and the ability to predict their realizations by comparing the dynamic optimal policy of our
model to that in the standard stochastic growth model; in particular, we discuss the e¤ect
of information on investment, output, sensitivity of output to the shock and the volatility of
output. Section 6 discusses long run convergence properties. Almost all formal proofs are
relegated to the Appendix.

3See, among others, Freixas (1981), Demers (1991), Mirman, Samuelson and Urbano (1993), and Koulova-
tianos, Mirman and Santugini (2009). Nyarko and Olson (1996) study a version of the model with imperfect
information and learning about the capital stock. See, also Majumdar (1982).
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2 Preliminaries.

We consider an in�nite horizon one-good representative agent economy. Time is discrete and is
indexed by t = 0; 1; 2; ::::At each date t � 0; the representative agent observes current output
yt as well as (an accurate prediction of) the realization of �t+1, the random production shock
that a¤ects the production function at the beginning period (t+1); the shocks are independent
over time so that the realization of �t+1 provides no additional information about technology
shocks in periods � > t+ 1. After this, the agent chooses the level of current investment xt,
and the current consumption level ct, such that

ct � 0; xt � 0; ct + xt � yt

This generates yt+1, the output next period through the relation

yt+1 = f(xt; �t+1)

where f(:; :) is the "aggregate" production function: The economy begins with a given initial
stock of output y0 > 0 and a given (accurate prediction of) the realization of �1. The
capital stock depreciates fully every period. Given current output y � 0; the feasible set for
consumption and investment is denoted by �(y) i.e.,

�(y) = f(c; x) : c � 0; x � 0; c+ x � yg

Note that the prediction of next period�s shock does not a¤ect the feasible set of consumption
and investment in the current period.

The following assumption is made on the sequence of random shocks:
(A.1) f�tg1t=1 is an independent and identically distributed random process de�ned on

a probability space (
;F ; P ); where the marginal distribution function is denoted by F: The
support of this distribution is a compact set A � R:

The production function f is assumed to satisfy the following:
(T.1) For all � 2 A; f(x; �) is concave in x on R+:
(T.2) For all � 2 A; f(0; �) = 0:
(T.3) For each � 2 A; f(x; �) is continuously di¤erentiable in x on R++ and, further,

f 0(x; �) = @f(x;�)
@x >0 on R++ �A:

(T.4) inf�2A[limx!0 f 0(x; �)] > 1:
Assumptions (T.1)-(T.3) are standard monotonicity, concavity and smoothness restric-

tions on production. (T.4) ensures that the technology is productive with probability one in
a neighborhood of zero. Note that we do not require that the production functions be ordered
in the realization of the random shock though we will make that assumption in a later section.

Let � 2 (0; 1) denote the time discount factor. Given the initial stock y0 > 0, the
representative agent�s objective is to maximize the discounted sum of expected utility from
consumption:

E

" 1X
t=0

�tu(ct)

#
where u is the one period utility function from consumption.

Let R = R [ f�1g: The utility function u : R+ ! R satis�es the following restrictions:
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(U.1) u is strictly increasing, continuous and strictly concave on R+ (on R++ if u(0) =
�1);u(c)! u(0) as c! 0:

(U.2) u is twice continuously di¤erentiable on R++;u0(c) > 0; u00(c) < 0;8c > 0:
(U.3) limc!0 u0(c) = +1:
Assumptions (U.1) and (U.2) are standard. Note that we allow the utility of zero con-

sumption to be�1: (U.3) requires that the utility function satisfy the Uzawa-Inada condition
at zero and ensures that optimal consumption and investment lie in the interior of the feasible
set.

The partial history at date t is given by ht = (y0; �1; x0; c0; : : : ; yt�1; �t; xt�1; ct�1; yt; �t+1):
A policy � is a sequence f�0; �1; : : :g where �t is a conditional probability measure such
that �t(�(yt)jht) = 1: A policy is Markovian if for each t; �t depends only on (yt; �t+1): A
Markovian policy is stationary if �t is independent of t: Associated with a policy � and an
initial state (y; �) is an expected discounted sum of social welfare:

V�(y; �) = E

1X
t=0

�tu(ct);

where fctg is generated by �; f in the obvious manner and the expectation is taken with
respect to P .

The value function V (y; �) is de�ned on R++ �A by:

V (y; �) = supfV�(y; �) : � is a policyg:

Under assumption (T.4), it is easy to check that

�1 < V (y; �);8y > 0; � 2 A:

We will assume that:
(V.1) V (y; �) < +1, 8y > 0; � 2 A::
It is easy to check that (V.1) is satis�ed if the technology exhibits bounded growth i.e.,

there exists K > 0 such that f(x;�)
x < 1 for all x > K and for all � 2 A: Even if the

technology allows for unbounded expansion of consumption, (V.1) is satis�ed if the utility
function is bounded above or, alternatively, the discount factor is small enough (smaller than
an asymptotic growth factor).

A policy, ��; is optimal if V��(y; �) = V (y; �) for all y > 0; � 2 A: Standard dynamic
programming arguments imply that there exists a unique optimal policy, that this policy is
stationary and that the value function V (y; �) satis�es the functional equation:

V (y; �) = sup
x2�(y)

[u(y � x) + �E�0 [V (f(x; �); �0)]; y > 0; � 2 A: (1)

In the functional equation (1), � is next period�s shock a¤ecting the output from current
investment whose realization is predicted (correctly) prior to deciding on current consumption
and investment, while �0 is the shock that will a¤ect the production function two periods later
(and whose realization, though unknown now, will be predicted accurately next period); the
expectation on the right hand side of (1) is taken with respect to the random variable �0:

It can be shown that for any � 2 A; V (y; �) is continuous, strictly increasing and strictly
concave in y on R++. Further, the maximization problem on the right hand side of (1) has a
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unique solution, denoted by x(y; �). The stationary policy generated by the function x(y; �)
is the optimal policy and we refer to x(y; �) as the optimal investment function. c(y; �) =
y � x(y; �) is the optimal consumption function. Using small variations of the standard
arguments in the literature, (U.3) can be used to show that:

Lemma 1 For all y > 0; � 2 A; x(y; �) > 0 and c(y; �) > 0:

Further,

Lemma 2 For all � 2 A; x(y; �) and c(y; �) are continuous and strictly increasing in y on
R++:

Using identical arguments to that in Mirman and Zilcha (1975), we have:

Lemma 3 V (y; �) is di¤erentiable in y on R++ and it satis�es:

V 0(y; �) = u0[c(y; �)] for all y > 0; (2)

where V 0(y; �) denotes the partial derivative of V with respect to its �rst argument.

Finally, we note that the following version of the stochastic Ramsey-Euler equation holds:

Lemma 4 For all y > 0; � 2 A

u0(c(y; �)) = �f 0(x(y; �); �)E�0 [u
0(c(f(x(y; �); �0)))]: (3)

Observe that unlike the standard stochastic growth model, for any given y > 0, (3)
is required to hold for every possible realization � of the forthcoming shock. The term
�f 0(x(y; �); �) on the right hand side of (3) captures the marginal productivity of invest-
ment which is deterministic (given �), while the term E�0 [u

0(c(f(x(y; �); �0)))] captures the
future expected marginal valuation of the additional output created through investment; the
marginal valuation is stochastic because it depends on next period�s consumption which is
in�uenced by the (yet unknown) random shock �0 of the period after next.

Assumptions (A.1), (T.1) - (T.4) and (V.1) hold throughout the paper. Lemmas and
propositions will speci�cally mention all additional assumptions.

3 Optimal Policy: Explicit Solutions.

In this section, we outline three well-known families of utility and production functions for
which we explicitly derive analytical solutions to the optimal investment and consumption
policy functions. We will use these later to illustrate the nature of dependence of macro-
economic aggregates on predicted shocks and to illustrate the e¤ect of information about
forthcoming shocks by comparing them to optimal policies derived in the standard stochastic
growth model with no prior information about forthcoming shocks.
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3.1 CES Utility and Linear Production Function.

In this subsection, we consider an economy where the production function is linear and the
utility function exhibits constant elasticity of substitution (or, constant relative risk aversion).
In particular:

u(c) =
c1��

1� � ; � 6= 1; � > 0: (4)

= ln c; � = 1: (5)

f(x; �) = �x (6)

where
� = inf A > 1: (7)

In the existing stochastic growth literature, the linear production technology was �rst ana-
lyzed by Levhari and Srinivasan (1969), and this particular family of utility and stochastic
production functions has been extensively used in the literature on unbounded stochastic
growth (see for example, De Hek, 1999).

We also impose the restriction :

�E(�1��) < 1: (8)

which ensures the existence of an optimal policy.
Recall that c(y; �); x(y; �) denote the optimal consumption and investment functions. Let,

y0(y; �) = f(x(y; �); �) = �x(y; �):

From (3):
(c(y; �))�� = ��E�0 [(c(y

0(y; �); �0))��] (9)

We conjecture that optimal policy function is linear in current output:

c(y; �) = �(�)y

Then,
y0(y; �) = �(1� �(�))y

c(y0(y; �); �0) = �(�0)�(1� �(�))y

Thus, (9) can be re-written as:

(�(�)y)�� = ��E�0 [(�(�
0)�(1� �(�))y)��]

= ��1��((1� �(�))y)��E�0 [(�(�0))��]

which can be re-written as:

(�(�))��

��1��(1� �(�))�� = E�
0 [(�(�0))��]
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Let
� = E�0 [(�(�

0))��]

Then,
(�(�))��

��1��(1� �(�))�� = �

so that :
�(�) =

1

1 + (��)
1
� �

1��
�

(10)

and the optimal policy functions are given by:

c(y; �) = [
1

1 + (��)
1
� �

1��
�

]y (11)

x(y; �) = [
(��)

1
� �

1��
�

1 + (��)
1
� �

1��
�

]y; (12)

where the constant � is implicitly determined by:

� = E[(�(�))��] = E[(1 + (��)
1
� �

1��
� )�] (13)

i.e.,

E[(��
1
� + �

1
� �

1��
� )�] = 1 (14)

Note that the left hand side of (14) is strictly decreasing in � and diverges to +1 as
�! 0. Further, using (8), the left hand side of (14) converges to �E(�1��) < 1 as �! +1.
Thus, there exists unique � > 0 that solves (14): Further, from (13), we can see that

� > 1:

Suppose � = 1: Then, (14) implies � = 1
1��and

c(y; �) = (1� �)y; x(y; �) = �y

which is independent of �: In other words, with a linear technology and logarithmic utility, the
optimal policy function is independent of the shocks (and in fact, identical to that obtained
in the standard model where agents invest and consume without observing the forthcoming
shock).

For � 6= 1; one cannot solve for the constant � explicitly. However, one can obtain
considerable information from the implicit equation (14) de�ning �: Observe that optimal
consumption c(y; �) is decreasing (increasing) and optimal investment x(y; �) is increasing
(decreasing) in the productivity shock � if the relative risk aversion � is greater than (less
than) one. In other words, whether a (predicted) productivity increasing realization of shock
increases or reduces investment depends on preferences and, in particular, relative risk aversion
(or, the intertemporal elasticity of substitution). Observe, however,

y0(y; �) =
�(��)

1
�

�1�
1
� + (��)

1
�

y

=
(��)

1
�

��
1
� + ��1(��)

1
�

y
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which is strictly increasing in � for all � > 0: In other words, independent of the level of risk
aversion, the output next period is always increasing in the productivity shock. We will see
later that these are more general properties for technologies ordered by the random shock.

Note that the above policy functions have been derived by using the Ramsey-Euler equa-
tion. To show that they are optimal, we need to verify that the transversality condition is
also satis�ed i.e., �tEV 0(y�t ; �t)! 0 where fy�t g is the stochastic process of output generated
by the optimal policy, given y�0 = y0 and given �1. This is contained in the appendix.

3.2 Log Utility and Cobb-Douglas production function with exponential
shock.

In this subsection, we consider the economy where the utility function is logarithmic:

u(c) = ln c

and the production function is Cobb-Douglas exhibiting bounded growth.

f(x; �) = x�;

where
0 < � = inf A � � = supA < 1:

Note that the random shock is not multiplicative but rather a¤ects the exponent of the Cobb-
Douglas production function. In the existing stochastic growth literature where agents acquire
no prior information about future shocks, explicit solution for the optimal policy function in
this economy was obtained by Mirman and Zilcha (1975). Note that f(x; �) is decreasing in �
on [0; 1] and increasing in � for � � 1: Further, f(x; �) < x for all x > 1 with probability one,
so that given initial conditions, all possible consumption and investment paths are uniformly
bounded. Thus, (V.1) is satis�ed.

To obtain the optimal policy function, we conjecture that the unique optimal consumption
function is linear in output and has the form:

c(y; �) = �(�)y:

The Ramsey-Euler (3) then implies:

1

�(�)y
= �A�[(1� �(�))y]��1E�0f

1

�(�0)A[(1� �(�))y]� g

which yields:

1

�(�)
= ��

1

1� �(�)E[
1

�(�0)
]

Let bm = Ef[�(�0)]�1g . Then,

1

�(�)
= 1 + ��bm

and taking the expectation on both sides with respect to � we have:

9



bm =
1

1� �E[(�] (15)

which implies

�(�) =
1

1 + ��[1� �E(�)]�1 =
1� �E(�)

1 + �[�� E(�)] (16)

which is a decreasing function of �: Observe that E(�) < 1 and so, 0 < �(�) < 1. The optimal
policy functions are given by:

c(y; �) = [
1� �E(�)

1 + �[�� E(�)] ]y (17)

x(y; �) = [
��

1 + �[�� E(�)] ]y; (18)

The transversality condition is easily veri�ed as feasible paths are uniformly bounded. Observe
that in this case, optimal consumption is always decreasing in � and optimal investment is,
therefore, increasing in �. However, as we shall see later, optimal output next period is not
necessarily monotonic in �:

3.3 Log Utility and Cobb-Douglas production function with multiplicative
shock.

In this subsection, we consider the economy where the utility function is logarithmic as before:

u(c) = ln c

and the production function is Cobb-Douglas with multiplicative shock:

f(x; �) = � x�; 0 < � < 1:

We assume that
0 < � = inf A:

For the standard stochastic growth model, explicit solution for the optimal policy function
for this case is contained in Mirman and Zilcha (1975). Note that the production function
is increasing in the shock. Further, given initial conditions, all possible consumption and
investment paths are uniformly bounded. Thus, (V.1) is satis�ed.

To obtain the optimal policy function for our model, we conjecture that the unique optimal
consumption function is linear in output and has the form:

c(y; �) = �(�)y:

Then, from (3):

1

�(�)y
= ���[(1� �(�))y]��1E�0f

1

�(�0)�[(1� �(�))y]� g

= ��[(1� �(�))y]�1E�0f
1

�(�0)
g
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which yields:

1

�(�)
= ��

1

1� �(�)E[
1

�(�0)
]

Let bm = Ef[�(�0)]�1g . Then,

1

�(�)
= 1 + �� bm

and taking the expectation on both sides with respect to � we have:

bm =
1

1� ��
which implies

�(�) =
1

1 + ��[1� ��]�1 = ��:

which is independent of �: Observe that �(�) 2 (0; 1). The optimal policy functions are given
by:

c(y; �) = ��y

x(y; �) = (1� ��)y:

The transversality condition is easily veri�ed as feasible paths are uniformly bounded. Observe
that in this case, optimal consumption and optimal investment are independent of �. The
optimal policy functions are in fact identical to that obtained in the conventional model with
no information about forthcoming shocks. In other words, information about impending shock
has no impact on the economy! As the production function is increasing in �; the optimal
output next period is always increasing in �:

4 E¤ect of More Productive Realizations of Shocks.

The primary purpose of this paper is to understand the manner in which the ability to pre-
dict forthcoming technology shocks (in the short run) a¤ects macroeconomic aggregates and
behavior. In this section, we analyze the monotonicity of output, investment and consump-
tion in (the predicted) realizations of forthcoming productivity shock. For this analysis to be
meaningful, it makes sense to con�ne attention to production functions that are ordered by
the realizations of the shock. Therefore, we assume that the total and the marginal product
resulting from any level of investment are increasing in the shocks. In that case, higher values
of the realizations of the productivity shock can be interpreted as "better" or, more produc-
tive. For simplicity of analysis we will also assume that the production function is smooth in
investment and shocks, and that the support of the distribution of shocks is an interval.

(T.5) The support A of the distribution F of productivity shocks is a interval [�; �] � R:
f(x; �) is twice continuously di¤erentiable on R++�A: Further, for any x > 0; � 2 A; @f@� > 0;
@2f
@�@x > 0.
Assumption (T.5) is retained throughout this section.
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4.1 E¤ect of Better Shocks on Investment and Consumption.

We begin by analyzing how investment and consumption change when the predicted realization
of the forthcoming shock is better. In particular, under assumption (T.5) higher values
of � indicate higher total and marginal return on investment. We examine the conditions
under which optimal investment x(y; �) is increasing in � (i.e., optimal consumption c(y; �) is
decreasing in �):

Economic intuition suggests that there are two e¤ects when an agent foresees a better
realization of next period�s shock First, there is an increase in the incentive to invest as the
return on investment is higher. Second, there is an increase in the incentive to increase current
consumption because a lower level of investment is enough to generate the same output next
period as would have been optimal if the observed shock was less productive. Which e¤ect
dominates should depend on the intertemporal elasticity of substitution that, in this model,
is simply the inverse of relative risk aversion.

The clearest illustration of this basic intuition is obtained by looking at the speci�c econ-
omy discussed in Section 3.1 where the production function is linear (given by (6) and (7)),
the utility function exhibits constant elasticity of substitution (given by (4) and (5)). Under
assumption (8), the explicit form of the optimal policy functions for this economy are given
by ( 11), (12) and (14). In particular, from (11) we have that the optimal investment policy
function is given by:

x(y; �) = [
(��)

1
� �

1��
�

1 + (��)
1
� �

1��
�

]y (19)

where � > 1 is a constant (de�ned implicitly) and � is the (constant) relative risk aversion
(or the inverse of the intertemporal elasticity of substitution). One can directly verify from
(19) the following proposition:

Proposition 5 Suppose that u exhibits constant relative risk aversion � > 0; and that the
production function is linear i.e., f(x; �) = �x with � > 1: Further, assume that �E(�1��) < 1.
Then, for any given y > 0; the (unique) optimal investment x(y; �) is strictly increasing in �
if � > 1 (high risk aversion, low intertemporal substitution elasticity); strictly decreasing in �
if � < 1 and independent of � when � = 1:

Proposition 5 explains why one may not always expect investment to increase (and in
fact, sometimes quite the reverse) when exogenous �uctuations cause increase in productivity,
or return on investment, and this is anticipated by economic agents. Further, consumption
preferences play a very important role here.

It is therefore of some interest to see if there are some more general conditions under which
optimal investment increases with anticipation of a more productive shock. To examine the
issues involved, we con�ne attention to production functions where the productivity shock is
multiplicative i.e., assume:

(T.6) f(x; �) = �h(x); � = inf A > 0 and h satis�es all conditions needed to ensure
(T.1)-(T.5).

Consider the functional equation of dynamic programming:

V (y; �) = max
0�x�y

u(y � x) + �E�0 [V (�h(x); �0)] (20)
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Using (T.5) and the uniqueness and interiority of optimal policy, it can be shown that the
value function is twice continuously di¤erentiable and that the optimal policy function is
continuously di¤erentiable. Let

W (x; �) = E�0V (�h(x); �
0) (21)

Fix y > 0: Consider �1; �2 2 A with �1 < �2; and let x1 = x(y; �1) and x2 = x(y; �2): Then,
clearly x1; x2 2 [0; y]: If x1 6= x2, then using (20) and 21:

u(y � x1) + �W (x1; �1) � u(y � x2) + �W (x2; �1)

u(y � x2) + �W (x2; �2) � u(y � x1) + �W (x1; �2)

so that
W (x2; �2) +W (x1; �1) �W (x1; �2) +W (x2; �1) (22)

If the function W (x; �) is supermodular on f(x; �) : 0 � x � y; � 2 Ag, then it is easy to
show that x1 � x2: From (21), we have that Wx� � 0 and W is supermodular in (x; �) if the
following inequality holds for all (x; �; �0) :

�V11(�h(x); �
0)

V1(�h(x); �0)
�h(x) � 1

i.e.,

�V11(y; �
0)y

V1(y; �0)
� 1, for all y > 0; �0 2 A: (23)

Thus, W is supermodular if the relative risk aversion exhibited by the value function is below
1; and in that case, optimal investment is weakly increasing in the shock. Note that as optimal
policy is in the interior of the feasible set, using Theorem 1 of Edlin and Shannon (1998), one
can check that if Wx� > 0; x1 < x2: Thus, optimal investment is strictly increasing in � if (23)
holds strictly. If the inequality in (23) holds the other way, W is submodular in (x; �) and in
that case, optimal investment is decreasing in �:4Thus, we have:

Lemma 6 Assume (T.5) and (T.6). (i) Suppose that

�V11(y; �)y
V1(y; �)

� (<)1, for all y > 0; � 2 A: (24)

Then, for any y > 0; optimal investment x(y; �) is (strictly) increasing in �:
(ii) Suppose that

�V11(y; �)y
V1(y; �)

� (>)1, for all y > 0; � 2 A: (25)

Then, for any y > 0; optimal investment x(y; �) is (strictly) decreasing in �::

4 If W (x; �) is submodular on f(x; �) : 0 � x � y; � 2 Ag, and x1 < x2: Then, from (22) we have:

W (x1 _ x2; �1 _ �2) +W (x1 ^ x2; �1 ^ �2) > W (x2; �1) +W (x1; �2)

which violates submodularity of W:

13



Lemma 6 indicates the role of relative risk aversion in determining the monotonicity of
investment in productivity shock; however, the conditions in the lemma are in terms of the risk
aversion displayed by the value function which is endogenous to the model. To be useful, we
would like to have a condition in terms of the primitives of the model. It is, however, di¢ cult
in general to derive bounds on the risk aversion displayed by the value function through
conditions on technology and preferences. In particular, the elasticities of both utility and
production functions play a role in the curvature of the value function. The next proposition,
which is one of the key contributions of the paper, provides one such characterization under
the additional assumption that the production function exhibits bounded growth:

(T.7) limx!1
�h(x)
x < 1;where � = supA:

For � > 0 small enough; de�ne:

K = inffx > 0 : max
�2A

�h(x) � xg+ �: (26)

� = inf
0<c<K

f�u
00(c)c

u0(c)
g; � = sup

0<c<K
f�u

00(c)c

u0(c)
g (27)

Let �(x) be the sum of �rst and second elasticity of the production function de�ned by:

�(x) = [
h0(x)x

h(x)
� h

00(x)x

h0(x)
]; x > 0:

Note that if h(x) = x
 ; 0 < 
 < 1; then �(x) = 1; for all x > 0: Further, if h(x) = Bx
1+x where

B > 1; then �(x) = 1+2x
1+x > 1; for all x > 0: Finally, if h(x) = x

� + x�; 0 < � < 1; 0 < � < 1;
� 6= �; then �(x) < 1; for all x > 0:

Proposition 7 Assume (T:5); (T:6) and (T:7):
(a) Suppose that � � 1 and �(x) � 1 for all x 2 (0;K): Then, for each y 2 (0;K]; optimal

investment x(y; �) is non-increasing in � on A.
(b)Suppose that � � 1 and �(x) � 1 for all x 2 (0;K): Then, for each y 2 (0;K]; optimal

investment x(y; �) is non-decreasing in � on A.

Proposition 7 provides a set of veri�able su¢ cient condition on technology and prefer-
ences under which better shocks increase or decrease investment. From Lemma 6, we know
that complementarity between investment and shocks depends on the curvature of the value
function. The latter, in turn, is in�uenced by the curvature of the production and utility
functions. For the speci�c case of linear production and constant relative risk aversion utility
function, we have seen in Proposition 5 that investment is increasing or decreasing in the
shock depending on whether relative risk aversion is above or below 1. Proposition 7 shows
that for a more general class of production technology, even if relative risk aversion is not
constant but uniformly bounded below by 1, investment is increasing in the shock as long as
the sum of the �rst and second elasticity of the production function is bounded below by 1.
Likewise, if relative risk aversion and the sum of the �rst and second elasticity of the produc-
tion function are uniformly bounded above by 1; then investment decreases and consumption
increases with a better shock. The degree of concavity of the utility and production functions
are important determinants of how capital formation responds to forthcoming shocks.
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4.2 E¤ect of Better Shocks on Output.

We now analyze how output changes with an improvement in the predicted realization of
the shock next period. In the standard stochastic growth model where no information about
the forthcoming shocks is available prior to consumption-investment decisions, investment de-
pends only on current output. As a result, next period�s output is always increasing (decreas-
ing) in the realization of next period�s shock as long as the production function is increasing
(decreasing) in the shock. In our framework, next period�s shock is known to the decision
maker when she decides on consumption and investment and we have seen in the previous
subsection, investment may be adjusted according to productivity shock and in particular,
better productivity shock may reduce investment. Nonetheless, as we show next, the output
resulting from investment (that is adjusted to the shock) increases with a better shock under
fairly general circumstances.

Given the current shock � to the production function and the current stock y, we denote
the output of the next period by y0(y; �) where

y0(y; �) = f(x(y; �); �)

Proposition 8 Assume (T:5): Then, y0(y; �) is strictly increasing in � i.e., a better realiza-
tion of the forthcoming productivity shock leads to higher output.

The proof of this proposition is based on complementarity between output next period and
the productivity shock. Under assumption (T.5), higher realization of the shock increases total
and marginal productivity so that an increase in the anticipated realization of next period�s
shock, reduces the current marginal cost (in terms of consumption sacri�ce) needed to attain
any given level of output next period. Thus, while better shocks may increase or decrease
investment, it increases aggregate output as long as total and marginal product are ordered
by the realization of the shock.

It is important to emphasize that Proposition 8 requires that marginal productivity (and
not just total product) increase with a better shock. We now provide an example where the
total product is ordered by the shock but the marginal product is not; we show that the
output next period is non-monotonic in the shock.

Example 9 Consider a version of the example considered in Section 3.2 where

u(c) = ln c; f(x; �) = x��

where
�1 < � = inf A � � = supA < 0:

Assume y0 2 (0; 1];this implies that consumption, investment and output paths lie in the
interval [0; 1] with probability one. Note that for any x 2 (0; 1); the total product f(x; �) is
strictly increasing in � on A: If we de�ne the random variable

e� = ��;
then the production technology reduces to the exact form described in Section 3.2, and the
optimal policy function is explicitly given by:

x(y;e�) = [ �e�
1 + �[e�� E(e�)] ]y
15



and therefore,

y0(y;e�) = [ �e�
1 + �[e�� E(e�)] ]e�ye�

By straightforward calculations we obtain that:

d

de� [ln y0(y;e�)] = ln y + lne�+ 1 + ln� � ln[1 + �(e�� E(e�))]� �e�
1 + �[e�� E(e�)]

= 1 + ln y + ln
�e�

1 + �(e�� E(e�)) � �e�
1 + �[e�� E(e�)]

Then, for 0 < y < 1;

d

de� [ln y0(y;e�)] < 1 + ln �e�
1 + �(e�� E(e�)) � �e�

1 + �[e�� E(e�)]
which is < 0 for e� close enough to zero. Choose the distribution of � such that E(�) = �1

2 ,
i.e., E(e�) = 1

2 : Observe that, as y ! 1;e�! 1; � ! 1

d

de� [ln y0(y;e�)] = 1 + ln y + ln
�e�

1 + �(e�� E(e�)) � �e�
1 + �[e�� E(e�)]

! 1 + ln
1

1 + (1� E(e�)) � 1

1 + [1� E(e�)]
=

1� E(e�)
1 + [1� E(e�)] + ln 1

1 + (1� E(e�))
=

1

3
+ ln

2

3
> 0

Therefore, there exists � 2 (0; 1); y 2 (0; 1) such that d
de� [ln y0(y;e�)] > 0 for e� close enough to

1. Fix any such �; y and choose � su¢ ciently close enough to �1 and � close enough to zero.
Then, using the above arguments, y0(y; �) is strictly increasing in � in a neighborhood of � and
strictly decreasing in � in a neighborhood of �: Thus, output next period is non-monotonic in
�.

5 E¤ect of Information about Shocks: Comparison with the
Standard Model.

In this section, we discuss the e¤ect of information about forthcoming productivity shocks and
the ability to predict their realizations by comparing the dynamic optimal policy of our model
to that in the standard stochastic growth model where no additional information about the
realization of forthcoming productivity shocks is available to economic agents (before making
their consumption-investment decisions). Much of the discussion in this section is based
on some of the parametric family of utility and production functions discussed in Section
3. For ease of notation, we shall refer to the standard stochastic growth model with no
additional information about the realization of the forthcoming shock as the NP-model, and
to our model with short run prediction of forthcoming shock as the P-model. We denote the
optimal investment function in the NP-model by bx(y); while, as before, we denote the optimal
investment function in the P-model by x(y; �):
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5.1 E¤ect on Investment

First, consider the e¤ect on investment. It is obvious that the comparison of bx(y) with x(y; �)
is likely to depend on the speci�c realization � of the forthcoming shock. To illustrate this
clearly, consider the economy with the speci�c utility and production functions described in
subsection 3.2 where u(c) = ln c, f(x; �) = x�; 0 < � = inf A � � = supA < 1: As derived in
that subsection, the optimal investment function in the P-model is then given by:

x(y; �) = [
��

1 + �[�� E(�)] ]y

In the NP-model with no information about the forthcoming shock, the optimal investment
function has been derived in Mirman and Zilcha (1975), and is given by :

bx(y) = �E(�)y
Observe that:

� � E(�)() ��

1 + �[�� E(�)] � �E(�)

so that x(y; �) � bx(y) if, and only if, � � E(�): In other words, if the realization � of the
forthcoming shock is above average, then investment is higher in the P model where the shock
is predicted and the opposite is true when the realization is below average.

Next, consider the e¤ect of information on the ex ante expected investment. Even here,
the comparison can go either way depending on the parameters of the model. To illustrate
this, we consider the speci�c case of a linear production technology and CES utility function
described by (4), (5) and (6) with parametric restrictions (7) and (8). In our P-model with
prior information about forthcoming shock, the optimal investment policy function is given
by

x(y; �) = [
(��)

1
� �

1��
�

1 + (��)
1
� �

1��
�

]y; (28)

where � is the constant elasticity of substitution and the constant � > 1 is implicitly deter-
mined by:

E[(��
1
� + �

1
� �

1��
� )�] = 1: (29)

In the NP-model, the optimal investment function has been derived in the literature (see, for
example, De Hek and Roy, 2001) and is given by

bx(y) = [�E(�1��)] 1� y (30)

Proposition 10 Consider the economy with linear production function and CES utility func-
tion described by (4)� (8):

(a) If � > 1; then Ex(y; �) < bx(y); i.e. from any level of current output y > 0; expected
current investment is lower in the P-model than in the NP-model.

(b) Suppose that �E(�) > 1: Then, there exists a range of admissible values of � < 1 and
� 2 (0; 1) such that Ex(y; �) > bx(y); i.e. from any level of current output y > 0; expected
investment is higher in the P-model than in the NP-model.
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Proposition 10 illustrates the important role played by consumption preferences in deter-
mining the qualitative e¤ect of information about forthcoming shocks on capital formation.
In particular, such information may increase or decrease (average) capital stocks depending
on the curvature of the utility function or the degree of relative risk aversion.

5.2 Sensitivity of Output to Shock.

We now study the e¤ect of information about forthcoming shock on the sensitivity of output
to the random shock. In the standard stochastic growth model (the NP-model) where there is
no additional information about the forthcoming shock, the output next period given current
output y and for realization � of the random shock, is given by:

by(y; �) = f(bx(y); �)
so that the sensitivity of by to di¤erent realizations of � arises simply through the production
function. In particular, suppose that assumption (T.5) holds. Then,

@by(y; �)
@�

=
@f(bx(y); �)

@�
: (31)

On the other hand, in our P-model where the forthcoming shock is accurately predicted, next
period�s output is given by:

y0(y; �) = f(x(y; �); �)

so that under assumption (T.5),

@y0(y; �)

@�
=
@f(x(y; �); �)

@x

@x(y; �)

@�
+
@f(x(y; �); �)

@�
: (32)

Now, because of di¤erences in the investment levels bx(y) and x(y; �), the right hand sides of
(31) and (32) cannot be directly compared. However, if we con�ne attention to the case of
multiplicative shock where:

f(x; �) = �h(x) (33)

one can say something more speci�c, for in that case:

@by(y; �)
@�

= h(bx(y))
and therefore, the elasticity of output with respect to � in the NP-model is given by:

�by;� = �by @by(y; �)@�
=
�h(bx(y))by = 1 (34)

whereas the elasticity of output with respect to � in the P-model is given by:

�y0;� =
�

y0
@y0(y; �)

@�
=
h0(x(y; �))

h(x(y; �))

@x(y; �)

@�
�+ 1: (35)

From (34) and (35),

�y0;� � �by;� () @x(y; �)

@�
� 0:
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Thus, for a production function of the form (33), it follows that information about forthcoming
shocks increases (decreases) the elasticity of output with respect to the production shock
precisely in situations where the investment function x(y; �) in the P-model is increasing
(decreasing) in �; as we have seen in the previous section, the latter depends, among other
things, on the extent of relative risk aversion and the elasticities of the production function.

5.3 Volatility of Output

We now compare the P and the NP models with respect to dispersion or volatility of output
next period from any current level of output. This allows us to shed some light how information
(about forthcoming shock) may a¤ect the transmission of volatility of the shock to the output
next period:Our analysis in this subsection will con�ne attention to the economy described
by (4),(5) and (6) with parametric restrictions (7) and (8) where the production function is
linear and the utility function is CES or constant relative risk aversion .

As discussed earlier, for this economy, in the P model with prior information about forth-
coming shock, the optimal investment policy function is given by (28) and (29) so that the
output next period is given by:

y0(y; �) = G(�)y

where

G(�) = [
(��)

1
� �

1
�

1 + (��)
1
� �

1��
�

]: (36)

In the NP version of the model, the optimal investment function is given by (30)and the
output next period is given by: by(y; �) = [�bk]y
where bk = [(E��1��) 1� ]: (37)

We would like to compare the volatility of

y0(y; �)

y
= G(�) (38)

with that of by(y; �)
y

= �bk: (39)

Let X and Y be two random variables and denote their zero-mean normalizations by bX =
X � E(X) and bY = Y � E(Y ): We say that X is more volatile or dispersed than Y if the
distribution of bX is a mean-preserving spread of the distribution of bY .5
Proposition 11 Consider the economy with a linear production function and constant rel-
ative risk aversion (or, CES) utility function described by (4); (5) and (6) with parametric
restrictions (7) and (8). Let G(�) be the function de�ned by (36) and bk; the constant de�ned
by (37). Then the following hold:

5This partial ordering of distributions with respect to dispersion is the Bickel-Lehman stochastic ordering
(Landsberger and Meilijson, 1994).
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(a) If G0(�) � bk and the degree of relative risk aversion � > 1; then for any given level
of current output, output next period is more dispersed in the P-model than in the NP-model
i.e., information about forthcoming shock increases the volatility of output.

(b) If G0(�) � bk and the degree of relative risk aversion � < 1
2 ; then for any given level

of current output, output next period is more dispersed in the NP-model than in the P- model
i.e., information about forthcoming shock decreases the volatility of output.

The proposition indicates under certain veri�able conditions on the parameters, infor-
mation about a forthcoming shock is likely to increase the volatility of output if relative risk
aversion is large, and decrease the volatility of output if risk aversion is small. Once again this
highlights the important role played by preferences in determining the e¤ect of information
on the nature of macroeconomic outcomes in the growth process.

6 Long Run Convergence

In this section, we discuss the long run behavior of the economy under short run prediction of
the forthcoming shock. In particular, we con�ne attention to the case where the production
technology exhibits bounded growth so that consumption, capital and output processes are
uniformly bounded. For such a technology, it is well known that in the standard stochastic
growth framework (NP-model), the optimal stochastic process of capital and output converge
in distribution to a globally stable invariant distribution (under certain regularity conditions).
In our model, where optimal investment in each period depends on both current output as well
as the predicted realization of the forthcoming shock, it is by no means obvious that similar
results should hold. We will show that under a set of assumptions that are comparable to ones
imposed in the standard framework, and independent of initial economic conditions, optimal
outputs converge in distribution to a unique invariant distribution whose support is bounded
away from zero.

Given initial stock of output y0 and the realization �1 of the production shock in period
1 (observed in period 0), the stochastic process of optimal outputs fytg1t=0 is determined by
the following law of motion:

yt+1 = f(x(yt; �t+1); �t+1); t � 0:

Observe that given the optimal investment function x(y; �) and the initial condition (y0; �1);
y1 = f(x(y0; �1); �1) is a deterministic number. We can therefore equivalently study the
stochastic process of optimal outputs fytg1t=1 where the initial condition is y1: Note that
(using Lemma 1), y0 > 0 implies that y1 > 0 for all �1 2 A; and y1 = 0 for some �1 2 A if,
and only if, y0 = 0. Let:

H(y; �) = f(x(y; �); �):

H(y; �) is the optimal transition function that relates current output to the optimal output
next period for each realization of the random shock �: Since f(z; �) is continuous and strictly
increasing in z and x(y; �) is continuous and strictly increasing in y (Lemma 2), it follows
that H(y; �) is continuous and strictly increasing in y on R+. Further, H(0; �) = 0 and for
all y > 0; H(y; �) > 0 for all � 2 A:

Given period 1 output y1 > 0; the stochastic process of optimal output fytg1t=1 is given by

yt+1 = H(yt; �t); t � 1: (40)
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We will show that under certain conditions, for every y1 > 0; the stationary Markov process
fytg1t=1 as de�ned by (40) converges in distribution to a unique invariant distribution whose
support is bounded away from zero.

We begin by imposing the following assumption:
(T.8) Either A is �nite or f(x; �) is continuous in � on A:
Let f(x); f(x) be de�ned by:

f(x) = max
�2A

f(x; �); f(x) = min
�2A

f(x; �):

It is easy to check using (T.8), that f(x); f(x) are continuous in x:
Next, we assume that the production function exhibits bounded growth:

(T.9) limx!1
f(x)
x < 1:

Let
K = supfx : f(x) � xg

Under assumptions (T.4) and (T.9), 0 < K <1:
Using the optimality equation (1) and the Maximum Theorem, one can show that if f(x; �)

is continuous in � on A; x(y; �) and therefore H(y; �) = f(x(y; �); �) is continuous in � on A:
Let

H(y) = min
�2A

H(y; �); H(y) = max
�2A

H(y; �); y > 0:

Note that the minimum and the maximum above are well de�ned. Further, using the Maxi-
mum Theorem, H(y) andH(y) are continuous (and non-decreasing). H(y) andH(y) represent
the worst and best optimal transition functions (the lowest and highest possible values of next
period�s output over all possible realizations of next period�s shock, when current output is
y).

By de�nition, H(y) � H(y) for all y:We now impose a mild condition on the optimal
transition functions:

(C.1) H(y) > H(y) for all y 2 (0;K]
Condition (C.1) ensures that under the optimal policy, the distribution of next period�s

output is non-degenerate. There are various conditions on technology and preferences that
can ensure (C.1). For instance, if (T.5) holds, then from Proposition 8, H(y; �) is strictly
increasing in � so that (C.1) holds.

Next, we impose a condition on the "worst" optimal transition function:
(C.2) There exists � > 0 such that H(y) > y;8y 2 (0; �):
Condition (C.2) requires that when current output is small enough, the optimal output

next period is strictly higher than current output (i.e., the economy expands) even under the
worst realization of the production shock. This ensures that independent of initial condition,
long run output (and therefore the limiting distribution of output) is uniformly bounded
away from zero. The next lemma provides veri�able su¢ cient conditions on preferences and
technology under which (C.2) holds.

Let
�(x) = inf

�2A
f 0(x; �)
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Lemma 12 Suppose that at least one of the following holds:

lim
x!0

inf �(x)[
u0(f(x))

u0(f(x)� x) ] >
1

�
(41)

A is �nite, �(x)! +1 as x! 0: (42)

Then, (C:2) holds i.e., there exists � > 0 such that H(y) > y;8y 2 (0; �):

The su¢ cient condition (42) for (C.2) is similar to conditions imposed in the standard
stochastic growth literature (for instance, Brock and Mirman, 1972) to ensure that the econ-
omy is uniformly bounded away from zero almost surely in the long run. Su¢ cient condition
(41) for (C.2) is similar to a condition used in a non-convex optimal stochastic growth model
by Mitra and Roy (2006).

Example 13 To see how (41) may be satis�ed consider the case of the CES utility function
given by (4) and (5) so that the marginal utility of consumption is given by:

u0(c) = c��; � > 0:

Further, suppose that the random shock enters the production function multiplicatively:

f(x; �) = �h(x)

and � > 0: Then, f(x) = �h(x); f(x) = �h(x); �(x) = �h0(x) and (41) holds if:

�h0(0)[
�

�
� 1

�h0(0)
]� >

1

�
:

This is satis�ed for all � 2 (0; 1); if h0(0) = +1:

De�ne 
0;
1 as follows:


0 = supfy > 0 : H(y) � yg (43)


1 = inffy > 0 : H(y) � yg (44)

Using condition (T.9), (C.1) and (C.2), it follows that 
0 and 
1 are well de�ned and:

0 < 
0 � K; 0 < 
1 � K:


0 is the largest positive �xed point of the worst transition function and 
1 is the smallest
positive �xed point of the best transition function.

The next lemma lies at the heart of the uniqueness of invariant distribution; it ensures
that every �xed point of the worst transition function H(y) lies below the smallest �xed point
of the best transition function H(y):

Lemma 14 Assume (T:8), (T:9), (C:1) and (C:2). Then, 
0 < 
1:
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The rest of the steps leading to our main result follow similar arguments as in the existing
literature on the standard stochastic growth model. Let � denote the probability measure for
the random shock. For t � 1; de�ne �t = (�1; ::::; �t) and let �t be the joint distribution of �t.
For each n � 1 and �n; de�ne Hn(:; �n) by:

Hn(y1; �
n) = H(:::::H(H(y1; �2); �3):::::; �n)

so that Hn(y1; �
n) is the realization of yn given y1 and �n = (�2; ::::; �n): If � is any probability

on R+, de�ne the probability �n� on R+ by

�n�(B) =

Z
�n(f�n : Hn(y1; �

n) 2 B)d�(y1)

where B is any Borel subset of R+: �n� is the distribution of yn when the distribution of y1
is �: � is an invariant probability if �1� = �: A subset S0 of R+ is said to be ��invariant if it
is closed and if

�(f� 2 A : H(y; �) 2 S0 for all y 2 S0g) = 1:

A subset S00 of S0 is a minimal ��invariant set if it is ��invariant and no strict subset of S00 is
��invariant. Finally, de�ne y to be a ���xed point if �(f� 2 A : H(y; �) = yg) = 1: Following
standard arguments used in stochastic growth models, we have:

Lemma 15 Assume (T:8), (T:9), (C:1) and (C:2). For any c 2 (0; �); the interval [c;K] is
��invariant and [
0;
1] is the unique minimal ��invariant interval in [c;K]:Further, there
does not exist a ���xed point in (0;K].

Given y1 > 0; for t > 1, let Gt(:) denote the probability distribution function of yt: We
are now ready to state the main result of this section.

Proposition 16 Assume (T:8); (T:9); (C:1) and (C:2). Then, there is a unique invariant
probability measure � on R++ for the stochastic process fytg1t=1 and the support of this prob-
ability measure is the non-degenerate interval [
0;
1] � (0;K) where 
0; 
1 are as de�ned in
(43) and (44): Further, independent of initial conditions; Gt(:), the distribution function for
the optimal output yt in period t; converges uniformly as t ! 1 to the distribution function
for the probability measure �.

The proof of Proposition 16 follows directly from using Lemma 15 and showing that a
"splitting condition" due to Dubins and Freedman (1966) is satis�ed.

Though our qualitative result on convergence to a unique stochastic steady state (inde-
pendent of initial condition) is similar to that obtained in the standard stochastic growth
model (NP-model), the limiting steady states may di¤er signi�cantly between the P and NP
models. This is illustrated in the following example.

Example 17 Consider the economy described in Section 3.2 where

u(c) = ln c; f(x; �) = x�:
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We will assume that at each date t, �t can attain one of two possible values:� = 0:25 or
� = 0:75 with probability 1

2 . We have seen that in our model with short run prediction of
forthcoming shock (P-model), the optimal investment policy function is given by:

x(y; �) = [
��

1 + �[�� E(�)] ]y

so that

H(y; �) = [
��

1 + �[�� E(�)] ]
�y�:

Choose � = 0:5: Then, it is easy to check that H(y; �) > H(y; �) for all y 2 (0; 1). Further, the
function H(y; �) has a unique positive �xed point. Setting H(y) = H(y; �) and H(y) = H(y; �)
(and using (43), (44)), we have


0 = [
��

1 + �[�� E(�)] ]
�

1�� = (
1

7
)3; 
1 = [

��

1 + �[�� E(�)] ]
�

1�� = (
1

3
)
1
3 :

As mentioned in the previous section, in the standard stochastic growth framework for this
economy (NP-model), the optimal policy function is given by:

bx(y) = �E(�)y
so that by(y; �) the optimal output next period when current output is y and the next shock has
realization �; is given by: by(y; �) = f(bx(y); �) = [�E(�)y]�:
It is easy to check that given any y0 > 0; the stochastic process fytg1t=0 de�ned by yt+1 =by(yt; �t+1) converges to a unique invariant distribution whose support is the interval [m;M ] �
(0; 1) where m is the unique positive �xed point of the function [�E(�)y]� and M is the unique
positive �xed point of the function [�E(�)y]� and, in particular,

m = [�E(�)]
�

1�� = (
1

4
)3;M = [�E(�)]

�

1�� = (
1

4
)
1
3 :

Observe that

0 < m < M < 
1:

so that the support of the unique invariant distributions di¤er between the two models.

Thus, even though the di¤erence in information structure of the two models (P and NP
models) pertains only to the short run i.e., whether or not one can predict the immediately
forthcoming shock, signi�cant di¤erences in the long run stochastic steady state of the econ-
omy may result.

APPENDIX.

Proof of Lemma 2.
Proof. The arguments used to prove these claims are similar to those used in the NP op-

timal growth model. However, for completeness, let us prove explicitly the strict monotonicity
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of x(y; �) in y. Similarly, one can verify that of c(y; �): Let 0 < y1 < y2 and let x1 = x(y1; �)
and x2 = x(y2; �) . Assume to the contrary that x2 � x1:Since x2 2 [0; y2] in this case, due
to the uniqueness of the optimum, we can write that:

u(y1 � x1) + �E�0fV [f(x1; �); �0]g � u(y1 � x2) + �E�0fV [f(x2; �); �0]g

u(y2 � x1) + �E�0fV [f(x1; �); �0]g � u(y2 � x2) + �E�0fV [f(x2; �); �0]g

Since V 0(y1; �) > V 0(y2; �) we must have x2 6= x1 , namely, x2 < x1, hence using the above
two inequalities we obtain:

u(y2 � x1)� u(y1 � x1) < u(y2 � x2)� u(y1 � x2)

Denote: y2 = y1 +� , where � > 0 , hence we attain that:

u(y1 � x1 +�)� u(y1 � x1)
�

<
u(y1 � x2 +�)� u(y1 � x2)

�

which is a contradiction due to the concavity of the utility function since y1 � x1 < y1 � x2.
This proves that we must have x2 > x1:

Veri�cation of Transversality Condition for the optimal policy in Section 3.1
Proof. Note that y�t+1 = �t+1[1� �(�t)]y�t and therefore,

y�t+1 = �t+1[1� �(�t+1)]y�t � [
t+1Y
j=1

�j(1� �(�j))]y�0; t = 0; 1; :::

which implies that

V 0(y�t ; �t) = u
0(c(y�t ; �t)) = [�(�t)y

�
t ]
�� = [�(�t)]

��[
tY
j=1

(�j)
��(1� �(�j))��]y0

Since
1� �(�j) = (��)

1
� �

1��
�
j

1

1 + (��)
1
� �

1��
�
j

= (��)
1
� �

1��
�
j �(�j)

we have
(�j)

��[1� �(�j)]�� = (��)�1��1j [�(�j)]
��

so that

�tEV 0(y�t ; �t) = �tE[(�(�t))
��][

tY
j=1

E[(�j)
��(1� �(�j�1))��]y0

= �t�[(��)�1E��1(�(�))��)]t�1

= �t�1[E(�
1
� �(�))��)]t�1 < �t�1[E(�(�))��)]t�1; as � > 1;

= (��)t�1 ! 0 as t!1

as �� = �E(���) � �E(�1��) < 1 (using (8) and � > 1).
Proof of Proposition 7
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Proof. We will prove part (a). The proof of part (b) is essentially identical.
Set

V 0(y; �) = u(y); y 2 [0;K]; � 2 A:

and for t � 1; de�ne iteratively the functions V t(y; �) on [0;K]�A by

V t+1(y; �) = max
0�;x�y

fu(y � x) + �E�0 [V t(�h(x); �0)]g: (45)

Note that V t is the value function for a �nite horizon version of the dynamic optimization
problem (where there are t more periods left).

Step 1. We will show by induction that for all t � 0 and � 2 A; V t(y; �) is continuous and
concave in y on [0;K]; twice continuously di¤erentiable in y,V t1 (y; �) > 0 on (0;K] and

�V
t
11(y; �)y

V t1 (y; �)
� 1; y 2 (0;K]; � 2 A: (46)

By assumption, this holds for V 0(y; �) = u(y): Suppose that it holds for t = T: We will show
that this holds for t = T + 1:Consider the functional equation (45) for t = T: Using strict
concavity of u; strict concavity of h and concavity of V T (y; �) in y, it is easy to check that
there is a unique solution xT (y; �) to the maximization problem on the right hand side of
(45). Note that xT is the optimal investment policy function for a �nite horizon version of the
dynamic optimization problem (where there are T more periods left). Further, using (U.3),
0 < xT (y; �) < y for all y 2 (0;K]; � 2 A. Using standard envelope arguments, one can then
show that V T+1(y; �) is continuous and concave in y on [0;K]; twice continuously di¤erentiable
in y, V T+11 (y; �) > 0 and xT (y; �) is di¤erentiable in y on (0;K]. Let cT (y; �) = y � xT (y; �):
Using the �rst order conditions for an interior solution to the maximization problem on the
right hand side of (45) and the envelope theorem it follows that for all � 2 A; y 2 (0;K]:

V T+11 (y; �) = u0(cT (y; �)) = ��h0(xT (y; �))E�0 [V
T
1 (�h(x

T (y; �)); �0)]:

and di¤erentiating through this identity with respect to y we have:

V T+111 (y; �) = u00(cT (y; �))cT1 (y; �) = �x
T
1 (y; �)[�h

00(xT (y; �))E�0V
T
1 (�h(x

T (y; �)); �0)

+f�h0(xT (y; �))g2E�0fV T11(�h(xT (y; �)); �0)g]

This implies that

�V
T+1
11 (y; �)y

V T+11 (y; �)
= f�u

00(cT (y; �))

u0(cT (y; �))
cT (y; �)g[c

T
1 (y; �)y

cT (y; �)
]

� �[
cT1 (y; �)y

cT (y; �)
] (47)
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Further,

�V
T+1
11 (y; �)y

V T+11 (y; �)

= ��x
T
1 (y; �)y[�h

00(xT (y; �))E�0V
T
1 (�h(x

T (y; �)); �0) + f�h0(xT (y; �))g2E�0fV T11(�h(xT (y; �)); �0)g]
��h0(xT (y; �))E�0 [V T1 (�h(x

T (y; �)); �0)]

= xT1 (y; �)y[f�
h00(xT (y; �))

h0(xT (y; �))

+
�h0(xT (y; �))

E�0 [V
T
1 (�h(x

T (y; �)); �0)]
E�0f�

V T11(�h(x
T (y; �)); �0)

V T1 (�h(x
T (y; �)); �0)

�h(xT (y; �))
V T1 (�h(x

T (y; �)); �0)

�h(xT (y; �))
g]

� xT1 (y; �)y[f�
h00(xT (y; �))

h0(xT (y; �))
+

�h0(xT (y; �))

E�0 [V
T
1 (�h(x

T (y; �)); �0)]
E�0f�

V T1 (�h(x
T (y; �)); �0)

�h(xT (y; �))
g]

=
xT1 (y; �)y

xT (y; �)
[�(xT (y; �)) + (� � 1)h

0(xT (y; �))

h(xT (y; �))
]

� xT1 (y; �)y

xT (y; �)
: (48)

where the last inequality follows from the conditions in the antecedent that � � 1 and �(x) � 1:
It follows from (47) and (48) that

�V
T+1
11 (y; �)y

V T+11 (y; �)
� maxfx

T
1 (y; �)y

xT (y; �)
;
cT1 (y; �)y

cT (y; �)
g (49)

There are only two possibilities:

(a) c
T
1 (y;�)y

cT (y;�)
� 1

(b) c
T
1 (y;�)y

cT (y;�)
< 1:

If (b) holds,:

cT1 (y; �) � (
cT (y; �)

y
) = 1� x

T (y; �)

y

so that

xT1 (y; �) = 1� cT1 (y; �) �
xT (y; �)

y

which implies:
xT1 (y; �)y

xT (y; �)
� 1:

Thus:

maxfx
T
1 (y; �)y

xT (y; �)
;
cT1 (y; �)y

cT (y; �)
g � 1 (50)

Using this in (49) implies that (46) holds for t = T + 1. This completes Step 1.
Step 2. We now show that for all t, xt(y; �) is non-increasing in � (where xt(y; �) is the

unique solution to the maximization problem on the right hand side of (45)). Let

W (x; �) = E�0V
t(�h(x); �0) (51)
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Observe that for any given �0 2 A; V t(�h(x); �0) is twice continuously di¤erentiation in (x; �)
on (0;K]�A and

@2V t(�h(x); �0)

@x@�
� 0

if

�V
t
11(�h(x); �

0)

V t1 (�h(x); �
0)
�h(x) � 1:

It follows from (46) in Step 1, therefore that

@2

@x@�
W (x; �) � 0 (52)

on f(x; �) : 0 < x � y; � 2 Ag:Fix y > 0: Consider �1; �2 2 A with �1 < �2; and let
x1 = x

t(y; �1) and x2 = x
t(y; �2): We claim that x1 � x2:To see this, suppose to the contrary

that x1 < x2: Clearly x1; x2 2 (0; y): Using (45) and (51) and the uniqueness of solution to
the maximization problem on the right hand side of (45):

u(y � x1) + �W (x1; �1) > u(y � x2) + �W (x2; �1)

u(y � x2) + �W (x2; �2) > u(y � x1) + �W (x1; �2)
so that

W (x2; �2) +W (x1; �1) > W (x1; �2) +W (x2; �1)

which violates (52):Thus, xt(y; �) is non-increasing in � for all t:
Step 3.For every y 2 (0;K]; xt(y; �) ! x(y; �) as t ! 1: This follows from Proposition

16.2 in Schäl (1975) that provides a condition under which optimal policy functions for �nite
horizon dynamic optimization problems converge to the optimal policy function for the in�nite
horizon problem as the horizon becomes in�nitely large.

Finally, as xt(y; �) is non-increasing in � for every t; the (pointwise) limit x(y; �) is non-
decreasing in �:

Proof of Proposition 8
Proof. Let h(y; �) be de�ned implicitly on R+ �A by:

f(h(y; �); �) = y (53)

Thus, h(y; �) is the investment required to attain output y next period when realization
of the forthcoming productivity shock is �:It is easy to check that h is twice continuously
di¤erentiable on R++ �A and that,

h1 =
1

f1
(54)

h2 = �f2
f1
< 0 (55)

and

h12 = � 1

(f1)2
[f11h2 + f12] (56)

< 0; since f12 > 0 (using (T.5)).
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As � is observed prior to making investment decision, one can re-write the dynamic optimiza-
tion problem as one where, given current output and realization � of next period�s shock, the
agent determines next period�s output y0. The functional equation of dynamic programming
can then be written as:

V (y; �) = max
0�y0�f(y;�)

u(y � h(y0; �)) + �E�0 [V (y0; �0] (57)

Fix y > 0: Consider �1 < �2; �1; �2 2 A and let y0 = z1 be optimal from state (y; �1) and
y0 = z2 optimal from state (y; �2):We �rst show that z1 � z2: Suppose, to the contrary, that
z1 > z2: Since z1 � f(y; �1); z2 < f(y; �1): Further, z1 � f(y; �1) < f(y; �2):From functional
equation and the uniqueness of optimal actions:

u(y � h(z1; �1)) + �E�0 [V (z1; �0] > u(y � h(z2; �1)) + �E�0 [V (z2; �0]
u(y � h(z2; �2)) + �E�0 [V (z2; �0] > u(y � h(z1; �2)) + �E�0 [V (z1; �0]

so that

u(y � h(z1; �1))� u(y � h(z2; �1)) > u(y � h(z1; �2))� u(y � h(z2; �2)) (58)

Let
�(z; �) = u(y � h(z; �)):

Note that
�1 = �u0(y � h(z; �))h1

and
�12 = �u0(y � h(z; �))h12 + u00(y � h(z; �))h1h2 > 0

From (58)
�(z1; �1) + �(z2; �2) � �(z1; �2) + �(z2; �1)

which leads to a contradiction as �12 > 0. Next, we claim that, in fact, z1 < z2: To see this,
suppose to the contrary that

z1 = z2 = z:

Then (under assumption of uniqueness of optimal actions) since �1 < �2;

x(y; �1) = x1 > x(y; �2) = x2

where
f(x1; �1) = f(x2; �2) = z:

From the Ramsey-Euler equation (3), we have:

u0(y � x1) = �f1(x1; �1)E�0 [u
0(z � x(z; �0))]

u0(y � x2) = �f1(x2; �2)E�0 [u
0(z � x(z; �0))]

so that
u0(y � x1)
u0(y � x2)

=
f1(x1; �1)

f1(x2; �2)
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Observe that since f11 < 0; f12 � 0; x1 > x2; �1 < �2;

f1(x1; �1) < f1(x2; �1) � f1(x2; �2)

while using strict concavity of u,

u0(y � x1) > u0(y � x2)

leading to a contradiction. This completes the proof.
Proof of Proposition 10
Proof. (a) Rewriting the expression for x(y; �) we obtain that:

Ex(y; �) = [1� E 1

1 + �
1
� (��1��)

1
�

] y (59)

Let A = (��)
1
� , G(�) = A

A+�
1
�
: Di¤erentiating G(�) twice we obtain that signfG00(�)g =

signf�m(m� 1)(�m +A) + 2m2�mg > 0 for m = 1
� and � � 1. Let z = ���

1��; then

1

1 + �
1
� (��1��)

1
�

=
1

1 + (z)
1
�

= G(z)

which is strictly convex in z so that using Jensen�s inequality:

EG(z) = E
1

1 + (z)
1
�

> G(Ez) =
1

1 + (Ez)
1
�

and using this in (59)

Ex(y; �)

y
< 1� 1

1 + �
1
� (E��1��)

1
�

=
(E��1��)

1
�

��
1
� + (E��1��)

1
�

(60)

Now, we show that for � � 1 we have :

��
1
� + (E��1��)

1
� � 1: (61)

De�ne, H(z) = [B + z
1
� ]� where B = ��

1
� ; z = ��1��: Then,

signH 00(z) = signf� � 1
�

z
1
� + (

1

�
� 1)(B + z

1
� )g � 0

for � � 1. Therefore, using Jensen�s inequality:

��
1
� + (E��1��)

1
� = H(E(z)) � EH(z)
= E[(��

1
� + �

1
� �

1��
� )�] = 1;

using (14). This establishes (61). Using (61) in (60) we obtain:

Ex(y; �)

y
< (E��1��)

1
� =

bx(y)
y
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and this establishes the �rst part of the proposition.
(b) Consider � < 1: For low values of �; the condition (8) may not hold. However, it is

easy to check that since �E� > 1, there exists 0 < b� < 1 such that (E��1�b�) 1b� = 1 and
therefore, (8) holds for � > b�. Further, there exists h 2 (0; 1); such that b� < 1

2 for � 2 (0; h).
De�ne,

L(z) = [1 +Dz
1
� ]�1 ; where D = �

1
� and z = ��1��

Di¤erentiating this function twice we obtain that:

signfL00(z)g = signf1� 1

�
+
2

�
[
Dz

1
�

1 +Dz
1
�

]g

Consider � 2 (0; h) so that b� < 1
2 and consider � 2 (b�; 12) . Using (14), we have that � �! 1

as � �! 0. Further, z = ��1�� ! 0 as � ! 0: Thus, by choosing � small we can guarantee

that Dz
1
�

1+Dz
1
�
is su¢ ciently small for all �, so that L00(z) < 0:Using the strict concavity of L(z)

we attain:

Ex(y; �)

y
= E[1� 1

1 + �
1
� (��1��)

1
�

] = E[1� L(z)]

> [1� L(E(z))] = 1� 1

1 + �
1
� (E��1��)

1
�

=
(E��1��)

1
�

��
1
� + (E��1��)

1
�

(62)

Now, we show that for � < 1 we have :

��
1
� + (E��1��)

1
� < 1: (63)

De�ne, H(z) = [B + z
1
� ]� where B = ��

1
� ; z = ��1��: Then,

signH 00(z) = signf� � 1
�

z
1
� + (

1

�
� 1)(B + z

1
� )g

= signf( 1
�
� 1)Bg > 0

for � < 1. Therefore, using Jensen�s inequality:

��
1
� + (E��1��)

1
� = H(E(z)) < EH(z)

= E[(��
1
� + �

1
� �

1��
� )�] = 1;

using (14). This establishes (63). Using (62) and (63), we have

Ex(y; �)

y
> (E��1��)

1
� =

bx(y)
y
:

This completes the proof.
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Proof of Proposition 11
Proof. We begin by observing that for � > 1; G(�); as de�ned in (36), satis�es G0 >

0; G00 < 0 so that G is strictly increasing and strictly concave on [� , �]:We want to show that

if G0(�) � bk; then bk� � E[bk�] is a mean-preserving spread of G(�) � E[G(�)]: For this, it is
enough to show that each expected utility maximizing risk averse decision maker will prefer
the random variable G(�)�E[G(�)] than bk��E[bk�] (see, Rothschild and Stiglitz,1970). Let
U be any strictly concave and non-decreasing utility function on R; without loss of generality,
let U be di¤erentiable. Then,

EfU(G(�)� E[G(�)])� U(bk�� E[bk�]g
� EfU 0(G(�)� E[G(�)])[G(�)� E[G(�)]� [bk�� E[bk�]]g
= CovfU 0(G(�)� E[G(�)]); G(�)� bk�g � 0

where the non-negativity of the covariance follows from the fact that U 0 is decreasing, G0 > 0
and G0(�)� bk � G0(�)� bk � 0 which together imply that U 0(G(�)� E[G(�)]) is decreasing
in � while G(�)� bk� is weakly decreasing in �: Thus, y0(y; �) = G(�)y is more dispersed thanby(y; �) = bk�y: This completes proof of part (a). Next, we prove part (b). We can verify that
for � < 1

2 we have G
00 > 0 so that G is strictly increasing and strictly convex on [� , �]:

We want to show that if G0(�) � bk; then G(�) � E[G(�)] is a mean-preserving spread ofbk��E[bk�]:As before, let U be any strictly concave and non-decreasing utility function on R;
without loss of generality, let U be di¤erentiable. Then,

EfU(G(�)� E[G(�)])� U(bk�� E[bk�]g
� EfU 0(bk�� E[bk�])[G(�)� E[G(�)]� [bk�� E[bk�]]g
= CovfU 0(bk�� E[bk�]); G(�)� bk�� E[G(�)]� E[bk�]g
� 0

where the negativity of the covariance follows from the fact that U 0 is decreasing and G0(�)�bk � G0(�)�bk � 0 which together imply that U 0(bk��E[bk�]) is decreasing in � while G(�)�bk�
is weakly increasing in �: Thus, by(y; �) = bk�y is more dispersed than y0(y; �) = G(�)y: This
completes proof of part (b).

Proof of Lemma 12.
Proof. Suppose that, contrary to the lemma, there exists a strictly positive sequence

fyng1n=1 ! 0 such that
H(yn) � yn;8n: (64)

Let fxng; f�ng be de�ned by

xn = x(yn; �n);H(yn) = f(xn; �n):

Since, xn � yn;fxng ! 0: From the Ramsey-Euler equation:

u0(c(yn; �n)) = �f 0(x(yn; �n); �n)E�0fu0(c(f(x(yn; �n); �n); �0))g
= �f 0(xn; �n)E�0fu0(c(f(xn; �n); �0))g (65)
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First, suppose that (41) holds. Then, from (65)

u0(c(yn; �n)) � �f 0(xn; �n)u0(f(xn; �n)); since c(f(xn; �n); �0) � f(xn; �n);8�0

and since c(yn; �n) = yn � xn � f(xn; �n)� xn, we have

u0(f(xn; �n)� xn) � �f 0(xn; �n)u0(f(xn; �n))

and therefore,8n

1 � �f 0(xn; �n)
u0(f(xn; �n))

u0(f(xn; �n)� xn)
� ��(xn)

u0(f(xn))

u0(f(xn)� xn)
;

which contradicts (41). Next, suppose that (42) holds. From (65):

u0(c(yn; �n)) = �f 0(xn; �n)E�0fu0(c(f(xn; �n); �0))g
= �f 0(xn; �n)E�0fu0(c(H(yn); �0))g
� ��(xn)E�0fu0(c(H(yn); �0))g
� ��(xn)E�0fu0(c(yn; �0))g; using (64)
� ��(xn)u

0(c(yn; �n)) Prf�0 = �ng
� ��(xn)u

0(c(yn; �n))q where q = min
r2A

Prf�0 = rg

and as q > 0;we have

�(xn) �
1

�q
;8n

which contradicts (42).
Proof of Lemma 14
Proof. Suppose not. Using (C.1), 
0 6= 
1: Therefore,


0 > 
1:

Since H(y) and H(y) are continuous, using (C.2), 
0 > 
1 > � > 0 so that

H(
0) = 
0; H(
1) = 
1:

This implies that for all � 2 A;

f(x(
0; �); �) � H(
0) = 
0: (66)

f(x(
1; �); �) � H(
1) = 
1: (67)

From (3):

u0(c(
0; �)) = �f 0(x(
0; �); �)E�0fu0(c(f(x(
0; �); �); �0))g
� �f 0(x(
0; �); �)E�0fu0(c(
0; �0))g;8� 2 A (using (66))

so that by taking expectation with respect to � on both sides of the above inequality we have:

E�[u
0(c(
0; �))] � �E�[f 0(x(
0; �); �)]E�0fu0(c(
0; �0))g
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and noting that �; �0 are iid random variables we have:

�E�[f
0(x(
0; �); �)] � 1

and since 
0 > 
1, strict concavity of f(x; �) in x and the fact that x(y; �) is strictly increasing
in y implies that:

�E�[f
0(x(
1; �); �)] > 1: (68)

Once again from (3):

u0(c(
1; �)) = �f 0(x(
1; �); �)E�0fu0[(c(f(x(
1; �); �); �0))g
� �f 0(x(
1; �); �)E�0fu0(c(
1; �0))g;8� 2 A (using (67)),

so that by taking expectation with respect to � on both sides of the above inequality we have:

E�[u
0(c(
1; �))] � �E�[f 0(x(
1; �); �)]E�0fu0(c(
1; �0))g

and noting that �; �0 are iid random variables we have:

�E�[f
0(x(
1; �); �)] � 1

which contradicts (68).
Proof of Lemma 15
Proof. For any y 2 [c;K]; H(y; �) = f(x(y; �); �) � f(y; �) � K with probability one

and further H(y; �) = f(x(y; �); �) � f(x(c; �); �) = H(c; �) � H(c) > c; with probability
one. Thus, [c;K] is ��invariant. From Lemma 14, [
0;
1] is a closed sub of [c;K] for any
c 2 (0; �): Further, for any y 2 [
0;
1]; H(y; �) � H(
1; �) � H(
1) = 
1 with probability
one and further, H(y; �) � H(
0; �) � H(
0) = 
0 with probability one. Thus, [
0; 
1] is
��invariant.

We now show that is no ��invariant closed interval that is a strict subset of [
0; 
1].
Suppose not. Then there exists a ��invariant closed interval [s; r] ( [
0; 
1]. Then, either
s > 
0 or r < 
1 or both. If s > 
0; then H(s) < s. This implies there exists �(s) 2 A
such that f(x(s; �(s)); �(s)) < s:If A is �nite, then �f� = �(s)g > 0 which immediately
contradicts ��invariance of [s; r]: If A is not �nite, then using (T.8) there exists � > 0; such
that H(s; �) < s; for all � 2 A \ (�(s) � �; �(s) + �) and since �(s) 2 A, �f� : � 2 A\
(�(s) � �; �(s) + �)g > 0: This contradicts ��invariance of [s; r]: If r < 
1; then H(r) > r.
This implies there exists �(r) 2 A such that f(x(r; �(r)); �(r)) > r: If A is �nite, then �f� =
�(r)g > 0 which immediately contradicts ��invariance of [s; r]: If A is not �nite, then using
(T.8), there exists � > 0; such that H(r; �) > r; for all � 2 A\ (�(r) � �; �(r) + �) and since
�f� : � 2 A\ (�(r)� �; �(r) + �)g > 0, we have a contradiction to the ��invariance of [s; r]:

Next, we argue that there is no other closed sub-interval of [c;K] that is minimal ��invariant.
To see this, suppose there is such an interval [s; r] 6= [
0; 
1]: If r < 
1; then H(r) > r and by
the same argument as at the end of the last paragraph, we obtain a contradiction. Therefore,
r � 
1. As [
0; 
1] is a minimal ��invariant interval, [s; r] is not a subset of [
0; 
1]: As
[s; r] is a minimal ��invariant interval, [
0; 
1] is not a subset of [s; r]: Together these imply
that 
0 < s that, in turn, implies that H(s) < s. Using the same argument as in previous
paragraph, we obtain a contradiction.

Finally, we observe that as 
0 < 
1; H(y) > y for all y 2 (0; 
1) so that (using similar
argument as above), �(f� 2 A : H(y; �) > yg) > 0. Similarly, as 
0 < 
1;for all y � 
1 > 
0;
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H(y) < y so that �(f� 2 A : H(y; �) < yg) > 0: Thus, there there does not exist a ���xed
point in (0;K]

Proof of Proposition 16
Proof. The proof is based on an appeal to results originally contained in Dubins and

Freedman (1966, Corollary 5.5)6 and adapted by Majumdar, Mitra and Nyarko (1989). In
particular, we use Theorem 10 in Majumdar, Mitra and Nyarko (1989) that can be reported
as follows (using our notation):

Let S0be a ��invariant closed interval in [0;K]: Suppose that for ��a.e. � in A, H(:; �)
is continuous and non-decreasing on S0 and there are no ���xed points in A:If there is a
unique minimal ��invariant closed interval in S0 then for some integer n; �n splits and the
conclusions of Theorem 9 hold i.e., there is one and only one invariant probability � on S0

and for each probability b� whose support is a subset of S0, the distribution function of �nb�
converges uniformly to the distribution function of �:

Choosing S0 = [c;K] for any c 2 (0; �) and [
0;
1] as the candidate unique minimal
��invariant closed interval in S0, the proposition follows from Lemma 15.
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