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Abstract

We model a competition between two teams (that may differ in size) as
an all-pay auction with incomplete information. Individuals exert effort
to increase the performance of one’s own team via an additively separable
aggregation function. The team with a higher performance wins, and its
members enjoy the prize as a public good. The value of the prize is iden-
tical to members of the same team but is unknown to the other team. We
show that in any monotone equilibrium in which everyone actively partic-
ipates, the bigger team is more likely to win if the aggregation function is
concave, less likely if convex, or equally likely if linear. We also show that
if the aggregation function is concave or linear then the expected payoff
for a player in the bigger team is higher than that in the smaller team.
Finally, we investigate how teams may form endogenously.

1 Introduction

Many economic, political and social activities are performed by groups or organi-
zations rather than individuals. When firms compete, the strategic interaction
is really between collectives of individuals that make up the firms. Electoral
competition between candidates involves strategic interaction between teams
consisting of the candidates themselves, their consultants and the activists that
support them. Lobbying efforts are carried out by interest groups who need to
coordinate the actions of their members in response to the actions of other in-
terest groups. Likewise, ethnic conflicts involve different peoples who are united
by a common background such as religion, origin or economic status.

Despite the ubiquity of strategic interactions between groups, the majority of
economic analysis treats players in game theoretic models as individual entities.
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comments.
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While this may be a helpful simplification, it ignores the interplay between in-
tra-group strategizing (how each member of a group reasons about the actions
of other members of the same group) and inter -group strategizing (how each
member of a group reasons about the actions of the members of the opposing
groups), which may have important implications for the outcome of the interac-
tion. Furthermore, by explicitly modeling each participating unit as a collective
of decision-makers, one may be able to gain insights on how different group
attributes (such as size, for instance) can affect the outcome.

In light of this we propose and analyze a model of competition between groups.
We focus on the case of two competing groups, or teams, of possibly different
sizes. Following the literature on group contests (see below) we model the inter-
action between teams as a generalized all-pay auction with incomplete informa-
tion. Individual members of each team exert effort to increase the performance
of one’s own team via an additively separable aggregation function, and the
team with a higher performance wins. Each player individually bears the cost
of his own effort regardless of winning or not.

Since we assume that individuals act non-cooperatively - each maximizing his
own personal payoff - a natural modeling question that arises is what makes a
collection of individuals a “team”? We propose to view a team as a cohesive set
of individuals who share the same values, which are commonly known to them.
We therefore assume that when a team wins, its members enjoy the prize as
a public good, and the value of this prize is identical to members of the same
team but is unknown to the other team.

We consider aggregation functions that are either concave or convex, which we
interpret as capturing either a case of physical tasks that typically exhibit de-
creasing returns to effort, or a case of “cognitive” tasks such as research or
innovation where returns to effort may be increasing. We show that if the
aggregation function is strictly concave or convex then there is a unique mono-
tone equilibrium in which every player actively participates, that is, everyone
puts positive effort in expectation. If the aggregation function is linear, then
all monotone equilibria are equivalent at the team level. Subsequent analysis
focuses on equilibria with active participation.

Our main interest is in understanding the implication of team size on the prob-
ability of winning and on the members’ payoffs. This relates to the well-known
“group size paradox”, which argues that free-rding puts a bigger group at a
disadvantage (see Olson (1982) and Becker (1983)). The main finding is that
these implications are determined by the curvature of the aggregation function.
We first show that the bigger team is more likely to win if the aggregation func-
tion is concave, less likely if convex, or equally likely if linear. The underlying
intuition is that the curvature of the aggregation function determines whether
in equilibrium additional members effectively augment or reduce the productiv-
ity of existent members. Second, we show that when the aggregation function
is concave or linear, then the expected payoff for a player in the bigger team
is higher than the expected payoff for for one in the smaller team. Moreover,
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there also exist convex aggregation functions under which the same result holds,
despite the fact that the bigger team is less likely to win.

Since group size can have important implications, we investigate how teams
might form. We consider a two stage game such that in the first stage players
split into teams, and in the second stage the teams compete. Our main result
is that team formation depends on how each member’s payoff changes with the
sizes of the two teams. If a member’s payoff increases with his own team size and
decreases with the size of the opponent team, then there exists a unique non-
trivial equilibrium in which in the first stage the teams are stochastically formed.
While this is true for a linear aggregation function, characterizing the class of
functions, which induce payoffs increasing in own team size and decreasing in
the opponent team size, remains an interesting open question.

Our analysis is closely related to the literature on contest theory. Most papers
in this literature can be classifed according to how their models fit the following
binary categorizations:

1. Who are competing: individuals or teams?

2. How is the winner chosen: stochastically or deterministically?

3. Information structure: complete or incomplete?

The literature can thus be organized into a 2× 2× 2 design:

Individuals Complete Incomplete

Stochastic

Deterministic

Teams Complete Incomplete

Stochastic

Deterministic

By now there is a vast literature that fills the cells in the “Individuals” table.
Some of the prominent works in the complete information column include Hill-
man and Riley (1989), Baye, Kovenock, and de Vries (1996) and Siegel (2009)
for the “deterministic” case and Siegel (2009) and Cornes and Hartley (2005)
for the “stochastic” case . The incomplete information column includes Amann
and Leininger (1996), Lizzeri and Persico (2000), Kirkegaard (2013) and Siegel
(2014) for the “deterministic” case, and Ryvkin (2010), Ewerhart and Quartieri
(2013) and Ewerhart (2014) for the “stochastic” case.

There is also an extensive literature on team contests with complete informa-
tion. This literature includes Skaperdas (1998), Nitzan (1991), Esteban and Ray
(2001, 2008), Nitzan and Ueda (2009, 2011), Münster (2007, 2009), Konrad and
Leininger (2007), and Konrad and Kovenock (2009), among many others. In
particular, our modeling approach of assuming that the value of winning is a
public good among team members follows that of Baik, Kim, and Na (2001),
Topolyan (2013) Chowdhury and Topolyan (2015) and Chowdhury, Lee, and
Topolyan (2016). These studies assume that the group bid is either the mini-
mum or the maximum of the individual bids, whereas we assume that a possible
non-linear function aggregates the individual bids into a total group bid. The
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group size paradox fails in many of the teams-stochastic-complete models (e.g.,
Esteban and Ray (2001) and Nitzan and Ueda (2011)), but is satisfied in the
teams-deterministic-complete model of Barbieri, Malueg, and Topolyan (2013).1

Our work falls into the incomplete information column, which has only been
filled recently by Fu, Lu, and Pan (2015) and Barbieri and Malueg (2015). The
first paper analyzes a general model that accomodates each of the cells in the
“Teams” table. However, their work differs from ours in that they study a
multi-battle contest: Players from two equal-size teams form pairwise matches
to compete in distinct two-player all-pay auctions, and a team wins if and only
if its players win a majority of the auctions. In contrast, we analyze a contest in
which the members of both teams participate simultaneously in one big all-pay
auction.

The second paper by Barbieri and Malueg (2015) is more closely related to
our work since it also analyzes a static incomplete information (static) all-pay
auction between teams that may differ in size. In contrast to us, they assume
that the value of winning is an independent private value of each team member,
and that the team’s bid is equal to the maximal bid among its members. Under
this specification they show that in the case of two teams with different cdfs, a
team’s probability of winning increases (decreases) with size if its cdf is inelastic
(elastic). We assume that all members of a team have the same commonly
known value of winning, but this value is unknown to the opponent team. As
stated above, we link the size advantage/disadvantage to the curvature of the
bid-aggregation function. In addition, we also analyze the implication of group
size on individual welfare, and show that this also depends on the curvature of
the aggregation function.

2 The Model

Two teams, B (for “big”) and S (for “small”), compete for a prize. Team B
has nB players and team S has nS players, where nB ≥ nS . We denote by X
a generic team and by Y the opponent team. Competition takes the following
form. All players simultaneously choose some action from R+. Player i’s chosen
action ei is interpreted as the amount of effort that player i exerts. Team X’s
overall performance, measured by its score, is given by the aggregation function

H
(

(ei)i∈X

)
=
∑
i∈X h(ei) where h is some real valued function. Assume that

h is strictly increasing, twice differentiable, and normalized so that h(0) = 0.
Clearly H is convex, concave or linear if and only if h is respectively convex,
concave or linear.

The higher scoring team wins the prize. A tie is broken by a fair coin. Every

1The papers demonstrating the failure of the group-size paradox do so by assuming dimin-
ishing marginal team performance to the cost born by each individual. However, since these
papers analyze a very different framework than ours, our result does not follow from theirs.
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member of team X receives a payoff of vX ∈ [0, 1] from winning the prize. vX
is known to members of team X before the contest starts, but is unknown to
members of the other team. It is common knowledge that vB and vS are both
drawn from the same distribution F , where F admits a strictly positive density
function f . Regardless of which team wins the prize, each player pays a cost
equal to the amount of effort he exerted. Thus, the net payoff to player i in
team X who exerted effort ei is 1XvX − ei, where 1X is equal to 1 if team X
won and is 0 otherwise.

3 The Analysis

In the paper we focus on pure strategy Bayesian Nash equilibria (BNE).2 A
BNE can be characterized by a vector of effort functions (ei) such that ei(v) is
the amount of effort player i exerts if the value of the prize is v. Given any BNE
there are associated equilibrium score functions PB and PS such that PX(v) :=∑
i∈X h(ei(v)) is the score of team X if the value of the prize is v. A BNE

is monotone if every player’s effort is weakly increasing in his valuation of the
prize. For the rest of the paper we focus on monotone BNE. It is straightforward
that in a monotone BNE, PB and PS are weakly increasing as well.

Let GX denote the ex ante equilibrium distribution of PX . The following lemma
extends Lemmas 1-3 and 5 of Amann and Leininger (1996) to the present setting.

Lemma 1. For any monotone BNE:

1. PB(1) = PS(1) = P (1).

2. GB and GS have a common support. [0, P (1)], and both are continuous
over this support.

3. min{GB(0), GS(0)} = 0.

Given a monotone BNE, for any team X, player i ∈ X and value v ∈ [0, 1],
ei(v) is the solution to the following maximization problem:

max
e≥0

GY

( ∑
j∈X,j 6=i

h(ej(v)) + h(e)
)
v − e.

It follows from Lemma 1 that the first order condition

G′Y

(
PX(v)

)
h′(ei(v))v = 1 (1)

2One of the reasons we study the incomplete information model, instead of the complete
information counterpart, is that pure strategy equilibria typically do not exist in the latter.
On the other hand, since we impose no additional assumption on the valuation distribution
F , all results in the paper hold for a model with “almost complete” information in which F
is arbitrarily close to a degenerate distribution.
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holds if GY is differentiable at PX(v) and ei(v) > 0.

We say that a BNE satisfies the active-participation property if there does not
exist a player who always exerts zero effort. We say that a BNE is in-team
symmetric if the members of each team use the same strategy.

The following proposition describes the set of all monotone BNE for each of
the three cases: (1) h is strictly concave, (2) h is strictly convex, (3) h is
linear. Moreover it establishes the uniqueness and in-team symmetry of active-
participation BNE in the first two cases.

Proposition 1.

1. If h is strictly concave/convex, then there is a unique monotone BNE, and
this BNE satisfies active-participation and is in-team symmetric.

2. If h is linear then there is a continuum of monotone BNE, of which only
one is in-team symmetric and monotone. Moreover, every monotone BNE
of every contest (characterized by the team size parameters (nB , nS)) has
the same equilibrium team score functions (PB , PS).

Proof. Suppose h is strictly concave or convex. Pick any two players i and j
in team X. If ei(v) > 0 and ej(v) > 0 then equation (1) implies h′(ei(v)) =
h′(ej(v)), which in turn implies ei(v) = ej(v) because h′ is strictly monotone.
Thus if h is strictly concave or convex then in any monotone BNE, given any v,
two players in the same team exert the same effort if neither is shirking.

Suppose h is strictly concave. Consider some team X and any v such that
ei(v) > 0 for some i ∈ X. Then the first order condition (1) holds for i. If there
is some j ∈ X such that ej(v) = 0 then since h′(0) > h′(ei(v)) we have

G′Y

(
PX(v)

)
h′(0) > 1,

implying that player j can profit by increasing his effort, a contradiction. Thus,
there does not exist v such that in the same team some players work and some
players shirk. Hence if h is strictly concave then any monotone BNE is in-team
symmetric.

Recall that in a monotone BNE, PX is weakly increasing. Lemma 1 implies
that the distribution GX has nop atoms, which combined with our assumption
that the density f is strictly positive implies that PX is strictly increasing on
(0, PX(1)). Clearly for any t > 0, GY (t) = Pr(PY (v) ≤ t) = Pr(v ≤ P−1Y (t)) =

F (P−1Y (t)). Thus we have G′Y (PX(v)) = f
(
P−1Y (PX(v))

)
(P−1Y )′(PX(v)). In-

team symmetry implies equation (1) can be rewritten as

f
(
P−1Y (PX(v))

)
(P−1Y )′(PX(v))h′

(
h−1(PX(v)/nX)

)
v = 1. (2)
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For any v such that PX(v) > 0, equation (2) can be simplied by a change of
variable t = PX(v) and reduce to

f
(
P−1Y (t)

)
(P−1Y )′(t)P−1X (t)h′

(
h−1(t/nX)

)
= 1.

Given Lemma 1 it is straightforward to verify that (PB , PS) determines a mono-
tone BNE if and only if PB = max(β, 0) and PS = max(σ, 0) where (β, σ) solves
the following boundary value problem:

f
(
σ−1(t)

)
(σ−1)′(t)β−1(t)h′

(
h−1(t/nB)

)
= 1 (3)

f
(
β−1(t)

)
(β−1)′(t)σ−1(t)h′

(
h−1(t/nS)

)
= 1 (4)

with boundary conditions:

β(1) = σ(1) (5)

max{β(0), σ(0)} = 0. (6)

This boundary value problem is exactly the same boundary value problem that
characterizes the monotone BNE of an all-pay contest between two players B
and S whose valuations are independently distributed according to F , such that
the score of player X is the same as his chosen amount of effort, and the cost
of exerting effort e is equal to cX(e) :=

∫ e
0

1

h′

(
h−1(t/nX)

) . By Proposition 1 of

Kirkegaard (2013) the auxiliary two-player game has a unique monotone BNE.
3 Part 1 immediately follows.

Suppose h is strictly convex. That an in-team symmetric monotone BNE
is unique is established exactly as above. Clearly that BNE satisfies active-
participation. Now we show that an active-participation monotone BNE must
be in-team symmetric. Pick any active-participation monotone BNE. Suppose
in team X there are players i and j whose effort functions are different. Thus
there exists some v such that ei(v) 6= ej(v). In the first paragraph of this proof
we showed that this implies that ei(v) and ej(v) cannot be both positive. With-
out loss of generality assume ei(v) > ej(v). It follows that ej(v) = 0. Since ej is
weakly increasing and is not constant, there is some v ≥ v such that ej(v−ε) = 0
and ej(v + ε) > 0 for any ε > 0 if v < 1, or ej(v − ε) = 0 and ej(v) = 1 for any
ε > 0 if v = 1. Suppose v < 1. We have ej(v + ε) = ei(v + ε) ≥ ei(v) > 0. It

3Kirkegaard (2013) imposes additional constraints on cX , but those constraints are irrele-
vant for the existence and uniqueness of the solution to the boundary value problem.
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follows that

lim
ε→0

(
PX(v + ε)− PX(v − ε)

)
≥ lim
ε→0

(
h(ej(v + ε))− h(ej(v − ε))

)
≥ h(ei(v))− h(0)

= h(ei(v))

> 0.

However this is a contradiction because GX is continuous at v by Lemma 1.
Similarly v = 1 also leads to a contradiction. Thus ei(v) = ej(v) for any v. This
establishes Part 2.

Now show Part 3. If h is linear then h′ is some constant γ > 0. It is easy
to verify that (PB , PS) are monotone BNE team score functions if and only
if PB = max(β, 0) and PS = max(σ, 0) where (β, σ) solves boundary value
problem given by (3)-(6), where h′(h−1(t/nX)) = γ. Since the BVP has a unique
solution, any two monotone BNE have the same team score functions. Moreover
since the BVP does not depend on (nB , nS), neither does its solution.

In the rest of the paper we focus on active-participation BNE because we are
interested in the implication of team size on performance. If a player shirks all
the time, then he has no impact on the contest and is essentially absent from
his team. Hence the “effective” team size should not take him into account.
Proposition 1 implies that restricting attention to active-participation BNE is
without loss of generality if h is concave because in this case it is the unique
monotone BNE, and is without loss of “much” generality if h is linear because
all monotone BNE are equivalent at the team level. However, it is worth noting
that if h is convex, then there are additional monotone BNE. It is easy to
verify each of those non-active-participation BNE looks exactly like the unique
active-participation BNE of the smaller contest with all the shirking members
removed.

3.1 Team Size and Performance

Since a team in our model is characterized by its size, a natural question that
arises is whether a bigger team is more likely to win. Recall that if members of
both teams exert the same amount of effort, then the bigger team has a higher
score and wins. Therefore, the bigger team has a size advantage. However,
because the prize is a pure public good, free-riding may be more serious in
the bigger team and hence may undermine its performance. It is therefore
not apriori clear which of the two forces is stronger, the size advantage or the
free-riding problem.

Our next result establishes that the bigger team is more (less) likely to win if
there are diminishing (increasing) returns to effort. Formally, the effect of team
size on the probability of winning is determined by the curvature of h. This
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means that the bigger team has an advantage in situations where the biggest
contribution to performance occurs early on. On the other hand, in tasks where
greater expertise (which increases the rate of return) requires higher effort, the
smaller team will have an advantage.

Proposition 2. In an active-participation monotone BNE:

1. If h is strictly concave then PB(v) ≥ PS(v) for any v and team B is more
likely to win.

2. If h is strictly convex then PB(v) ≤ PS(v) for any v and team S is more
likely to win.

3. If h is linear then PB(v) = PS(v) for any v and both teams win with the
same probability.

Proof. Fix an active-participation monotone BNE. Suppose h is strictly concave
and PB(v) = PS(v) = t > 0 for some v. Thus by equations (3) and (4) we have

(P−1S )′(t)h′
(
h−1(t/nB)

)
=

1

f(v)v

(P−1B )′(t)h′
(
h−1(t/nS)

)
=

1

f(v)v
.

Since h is strictly increasing, nB ≥ nS implies h−1(t/nB) < h−1(t/nS), which
in turn implies h′(h−1(t/nB)) > h′(h−1(t/nS)). Thus (P−1S )′(t) < (P−1B )′(t),
which implies that P ′S(v) > P ′B(v). Since PB(1) = PS(1) by Lemma 1(1),
it follows that v = 1. Given Lemma 1(3), that P ′S(1) > P ′B(1) then implies
PB(v) > PS(v) for any v ∈ (0, 1). Part 1 of the present proposition immediately
follows. Part 2 is established with the symmetric argument.

To show Part 3, notice that if h is linear then the boundary value problem
given by equations (3)-(6) are symmetric in (β, σ). Thus the uniqueness of the
solution implies that β = σ, in turn implying Part 3.

Proposition 2 implies that the existence of the “group-size paradox” depends
on whether a player’s mariginal return to effort is diminishing or increasing. To
give some intuition for this result consider the case of a strictly concave h.

1. If a team with n members incurs a total cost of C, then the team score
will be nh(C/n). Taking the team as a whole, the marginal productivity
is thus d

dCnh(C/n) = h′(C/n). Since h is strictly concave, it follows that
for a given C, the marginal productivity of a team increases with team
size. Thus given the same total cost C we have nBh(C/nB) > nSh(C/nS),
implying that the score of the bigger team is higher.

2. For an n-member team to achieve a total score of T , each member’s effort
must be h−1(T/n), and therefore each member’s individual mariginal pro-
ductivity is (h−1)′(T/n)). This individual marginal productivity is also
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increasing in n. In other words, additional members make existent mem-
bers more “productive”: To achieve the same team score everyone on the
bigger team can now decrease his effort, which simultaneously increases his
marginal productivity (this effect is somewhat similar to that of strategic
complementarity).

3.2 Team Size and Individual Welfare

Would a player prefer to be in the bigger team or in the smaller team? We cannot
answer this question by merely comparing the winning probabilities because a
higher winning probability may require a higher level of individual effort, which
may offset the gain from a higher winning probability. Suppose h is either
concave, convex or linear, and that the players coordinate on the unique in-team
symmetric monotone BNE.4 It is clear that the ex ante equilibrium expected
payoff for a player in team X depends only on the number of players in each
team. Let u(nX , nY ) denote this expected payoff for a player in team X. The
following proposition shows that if h is weakly concave, that is, if marginal
returns to effort is weakly diminishing, then in equilibrium members of the
bigger team are better off than members of the smaller team.

Proposition 3. If h is weakly concave, then u(nB , nS) > u(nS , nB) if nB > nS.

Proof. Let eX denote the effort function of a player in team X in the symmetric
monotone BNE. Define P−1X (0) = 0. Thus

u(nX , nY ) =

∫ 1

0

F
(
P−1Y (PX(v))

)
vdF (v)−

∫ 1

0

eX(v)dF (v).

First suppose h is strictly concave. Thus by Proposition 2(1), PB(v) ≥ PS(v)
with the inequality being strict for a set of values with positive measure under
F . Suppose a player in team B unilaterally deviates to using the effort function

ê(v) = max
{

0, h−1
(
PS(v)− (nB − 1)h(eB(v))

)}
,

that is, the player shirks as much as he can to ensure that for any v the resulting
team score P̂B(v) is as high as PS(v). That PB(v) ≥ PS(v) implies ê(v) ≤ eB(v).
It follows from PB(v) ≥ P̂B(v) ≥ PS(v) that

P−1S (P̂B(v)) ≥ P̂−1B (PS(v)) ≥ P−1B (PS(v))

with at least one of the two above inequalities being strict for any v such that
PB(v) ≥ PS(v).

4We get in-team symmetry for free by Proposition 1 if h is strictly convex or concave.
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Now we show that ê(v) ≤ eS(v). This is clearly true for any v such that
eB(v) ≤ eS(v). For any v such that eB(v) ≥ eS(v) we have (nB − 1)h(eB(v)) ≥
nSh(eB(v)) ≥ nSh(eS(v)) = PS(v), implying h−1

(
PS(v)−(nB−1)h(eB(v))

)
<

0, which in turn implies ê(v) = 0 ≤ eS(v).

Thus we have

u(nB , nS) ≥
∫ 1

0

F
(
P−1S (P̂B(v))

)
vdF (v)−

∫ 1

0

ê(v)dF (v)

≥
∫ 1

0

F
(
P̂−1B (PS(v))

)
vdF (v)−

∫ 1

0

ê(v)dF (v)

>

∫ 1

0

F
(
P−1B (PS(v))

)
vdF (v)−

∫ 1

0

ê(v)dF (v)

≥
∫ 1

0

F
(
P−1B (PS(v))

)
vdF (v)−

∫ 1

0

eS(v)dF (v)

= u(nS , nB).

If h is linear then PB = PS by Proposition 2(3). Thus v = P−1S (PB(v)) =
P−1B (PS(v)) and eB(v) ≤ eS(v) with the inequality being strict if eB(v) > 0.
Thus

u(nB , nS) =

∫ 1

0

F (v)vdF (v)−
∫ 1

0

eB(v)dF (v)

>

∫ 1

0

F (v)vdF (v)−
∫ 1

0

eS(v)dF (v)

= u(nS , nB).

If h is convex, then the argument used in the proof of Proposition 3 does not
work, and the welfare comparison in general is unclear. However, we can estab-
lish that for some convex h, it is still the case that each member of the bigger
team receives a higher expected payoff than each member of the smaller team,
even though the smaller team is more likely to win.

Proposition 4. For any nB > nS there exists some convex h such that u(nB , nS) >
u(nS , nB).

Proof. Pick any nB and nS where nB > nS . Define hα(x) = xα. Let v(α|nX , nY )
be equal to u(nX , nY ) for the game with h = hα. Clearly v(α|nX , nY ) is contin-
uous in α. Since v(1|nB , nS) > v(1|nS , nB) by Proposition 3, there exists some
α > 1 such that v(α|nB , nS) > v(α|nS , nB). Clearly hα is convex if α > 1.
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3.3 Endogenous Team Formation

So far we assumed that the competing teams are exogenously given. In this
section we investigate how teams come into being. To do this, we consider the
following two-stage game.

1. In the first stage, an even number of N > 2 players simultaneously choose
a letter R or L, interpreted as choosing to join team R or L.

2. In the second stage, players who chose the same letter form a team that
competes with the players who chose the other letter, where the competi-
tion takes the contest format described in Section 2.

Assume that the value of the prize is realized only after the teams are formed.
Also, if all players choose the same team, then there is no contest and the prize
is awarded to that single team.

Obviously, there is always a trivial equilibrium in which everyone chooses the
same team. However, this equilibrium is uninteresting, and also demands a lot
of coordination from the players. We therefore explore other equilibria. To do
this, assume that h is concave, convex or linear, and that in the second stage the
teams coordinate on the unique in-team symmetric monotone BNE. It turns out
that team formation depends on how a player’s ex ante equilibrium expected
payoff u changes with the teams’ sizes.

Proposition 5. If u(nX , nY ) < u(nX + 1, nY − 1) for any nX and nY , then
there is a unique non-trivial equilibrium in which each player chooses either
team with equal probability.

Proof. Pick any non-trivial equilibrium. We first show that every player is
indifferent between choosing either letter. Suppose there is some player i who
strictly prefers to choose R. Pick another player j and denote the probability
that he chooses R as p. Let r(n) denote the probability that n players other
than i and j choose R, and l(n) the analogous probability for L. Player i’s
expected payoff from choosing R is

vR(p) =
∑

n=0:N−2
r(n)

[
pu
(
n+ 2, N − n− 2

)
+ (1− p)u

(
n+ 1, N − n− 1

)]
= p

∑
n=0:N−2

r(n)
[
u
(
n+ 2, N − n− 2

)
− u
(
n+ 1, N − n− 1

)]
+

∑
n=0:N−2

r(n)u
(
n+ 1, N − n− 1

)
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Likewise his expected payoff from choosing L is

vL(p) =
∑

n=0:N−2
l(n)

[
(1− p)u

(
n+ 2, N − n− 2

)
+ pu

(
n+ 1, N − n− 1

)]
= (1− p)

∑
n=0:N−2

l(n)
[
u
(
n+ 2, N − n− 2

)
− u
(
n+ 1, N − n− 1

)]
+

∑
n=0:N−2

l(n)u
(
n+ 1, N − n− 1

)

By assumption u
(
n+2, N−n−2

)
−u(n+1, N−n−1) > 0 for each n = 0 : N−2.

Thus vR(p) is increasing in p and vL(p) is decreasing in p.

It is easy to verify that player j’s expected payoff from choosing R is vR(1) and
that from choosing L is vL(1), because player i chooses R with certainty. That
player i strictly prefers R to L implies vR(p) > vL(p), which in turn implies that
vR(1) > vL(1). Therefore player j also chooses R with certainty. It follows that
every player chooses R with certainty, a contradiction because we have arrived
at a trivial equilibrium.

Suppose player j chooses R with probability p and player i with probability q.
Inheriting the notation from above, we have vR(p) = vL(p) and vR(q) = vL(q)
because by the previous paragraph both i and j are indifferent between choosing
either letter. Thus p = q since vR is increasing and vL is decreasing. It follows
that in the non-trivial equilibrium, for any player the following indifference
condition holds: ∑

n=0:N−1

(
N − 1

n

)
pn(1− p)N−1−nu(n+ 1, N − 1− n)

=
∑

n=0:N−1

(
N − 1

n

)
(1− p)npN−1−nu(n+ 1, N − 1− n).

That u is increasing in its first argument and decreasing in its second argument
implies the left hand side is increasing in p and the right hand side is decreasing
in p. Thus the only solution to this equation is p = 0.5.

Propositions 1 and 2 imply that if h is linear then regardless of the number of
players in each team, the unique symmetric monotone BNE has the same team
score functions (PB , PS) and moreover PB = PS =: P . Thus

u(nX , nY ) =

∫ 1

0

(
F (v)− h−1(P (v)/nX)

)
dF (v).

u(nX , nY ) is strictly increasing in nX because h is increasing, and is invariant
with respect to nY . Thus we have the following corollary of Proposition 5:

13



Corollary 1. If h is linear, then there is a unique non-trivial equilibrium in
which each player chooses either team with equal probability.

We were not able to analytically establish how u changes with the teams’ sizes
for more general h functions. Numerical simulations suggest that u is increasing
in nX and decreasing in nY also when h is strictly convex and strictly concave.5

4 Concluding remarks

We proposed to model competition between teams as a contest between two
groups of players, where each single player incurs the cost of his own effort
and the team’s overall effort is some aggregation of the individual efforts of its
members. What makes a collection of individuals a “team” is the fact that the
award from winning is a pure public good among them, and the value of this
public good is common knowledge among the members. In contrast, the value
of the award to the opposing team is not observed and is treated as a random
variable.

This model allowed us to analyze whether the bigger team has an advantage,
and whether the members of the bigger team are better off. Our results shed
new light on the ”group-size paradox” by showing that the strategic effect of size
depends on whether the marginal effect of individual effort is diminishing or not.
We interpret this to mean that size advantage may depend on the particular
task at hand, which determines how the marginal contribution of effort changes
with the level of effort.

Future work should try and explore how other characteristics of teams - such as
the composition of heterogenous teams, or the communication protocols among
their members - affect the outcome of competition. The ultimate goal is to try
and incorporate into standard models of strategic interaction the idea that the
players are actually groups of individuals who have to consider the actions of
their peers as well as those of the competing group.
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