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Abstract

With applied work in mind, we define an equilibrium notion for
dynamic games with assymetric information which does not require
a specification for players’ beliefs about their opponents types. This
enables us to define equilibrium conditions which, at least in princi-
pal, are testable and can be computed using a simple reinforcement
learning algorithm. We conclude with an example that endogenizes
the maintenance decisions for electricity generators in a dynamic game
among electric utilities in which the costs states of the generators are
private information.
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This paper develops a relatively simple framework for the applied analysis
of dynamic games with asymmetric information. We consider a class of
dynamic games in which there are a finite number of active players in each
period, each characterized by a vector of state variables. Some of these state
variables are publicly observed while others are private information. All
state variables evolve over time with the outcome of the players’ actions. In
addition to affecting the evolution of the state variables these actions provide
signals on the variables that are private information.

In this context we provide an equilibrium notion whose conditions are
defined in terms of variables which, at least in principal, are observable. In
particular they do not require a specification for players’ beliefs about their
opponents’ types. This enables us to define equilibrium conditions which are
testable, and the testing procedure does not require computation of posterior
distributions. Moreover the equilibrium generated by a given set of primitives
can be computed using a simple reinforcement learning algorithm. As a result
one could view the AI algorithm as a description of how players’ learn the
implications of their actions in a changing environment and justify the output
of the algorithm in that way.1 Neither the iterative procedure which defines
the algorithm, nor the test of the equilibrium conditions, are subject to a
curse of dimensionality.

In the game we consider the number of active players may change over
time due to entry and exit. Each active player is characterized by a vector of
state variables (e.g. indexes of their cost function, qualities of the goods they
market, etc.) which can take values only on a finite space. The state variables
of one firm are not necessarily observable to the other firms. Each firm’s
returns in a given period are determined by the firms’ state variables and
their actions. The actions are allowed to contain a set of continuous controls
(e.g. investment), and a set of discrete controls (e.g. sending a signal, entry,
exit, etc.). The discrete control may or may not be observable to the firms’
competitors and are taken from a finite set. The continuous controls are
not observable to the firms’ competitors and affects the game through their

1The reinforcement learning, or stochastic approximation, literature dates back to the
classic paper of Robbins and Monroe,1956, and has been used extensively for calculating
solutions to single agent dynamic programming problems (see Bertsekas and Tsikilis,1996
and the literature they cite). Pakes and McGuire,2001, show that it has significanat
computational advanatages when applied to full information dynamic games, but as we
will show the advantages in using it to compute the solution to asymmetric information
dynamic games are much larger.
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impact on the probability distribution of discrete state variables. In addition
to these conditions we require a restriction on the informational structure of
the game to guarantee that the state space be finite (there are alternative
possibilities here, see below).

We define an Applied Markov Equilibrium (hereafter, AME) for our game
as a triple which satisfies three conditions. The triple consists of; (i) a subset
of the set of possible states, (ii) a vector of strategies defined for every possible
information set of each agent, and (iii) a vector of values for every state that
provides the expected discounted value of net cash flow conditional on the
possible outcomes of the agent’s actions at that state. The first condition is
that the subset of states is a recurrent class of the Markov process generated
by the equilibrium strategies. The second condition is that the strategies
are optimal given the evaluations of outcomes for all points in this recurrent
class, and the last condition is that these evaluations are indeed the expected
discounted value of future net cash flows on the recurrent class if all agents
play the equilibrium strategies.

When all the state variables are observed to all the agents, our equilibrium
notion is similar to but weaker than the familiar notion of Markov Perfect
equilibrium as used in Maskin and Tirole (1988, 2001). This because we
only require that the evaluations be consistent with the outcomes of observed
play on the recurrent class. More generally our equilibrium concept is closely
related to the notion of Self Confirming equilibrium, as defined by Fudenberg
and Levine (2001). Self Confirming equilibrium requires actions to be optimal
given players’ beliefs about opponents’ actions and those beliefs to be correct
on the equilibrium path. Our equilibrium conditions requires actions to be
optimal given the players’ evaluations of the outcomes of their actions and
those evaluations to be consistent along the equilibrium path.

The fact that our equilibrium conditions are defined in terms of observ-
ables and hence can be tested, and that the equilibrium policies generated
by a given set of primitives can be computed using a simple reinforcement
learning algorithm, makes our notion of equilibrium relatively easy to use in
applied work. To illustrate we conclude with an example that endogenizes
the maintenance decisions of electricity generators. Maintenance decisions
are naturally analyzed in a dynamic framework and can have large impacts
on the performance of electricity markets. We take an admittedly simplified
set of primitives and compute and compare AME equilibria in which the cost
states of all generators are observable to an AME equilibria in which each
firm only observes the cost states of its own generators. The AME equilibria
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are then comparred to the solution to a social planner and a monpolis’ts
problem.

The next section describes the details of the game in a general setting.
Section 2 provides a definition of, and sufficient conditions for, our notion of
an Applied Markov Equilibrium. Section 3 provides an algorithm to compute
this equilibrium, and section 4 contains our example.

1 A Finite State Dynamic Game with Asym-

metric Information.

We extend the framework in Ericson and Pakes (1995) to allow for asymmet-
ric information.2 In each period there are nt potentially active firms, and we
assume that with probability one nt ≤ n < ∞ (for every t). Each firm has
payoff relevant characteristics. Typically these will be characteristics of the
products marketed by the firm or of their cost functions. The profits of each
firm in every period are determined by; the payoff relevant random variables
of all of the firms, a subset of the actions (or controls) of all the firms, and
a set of common determinants of demand and costs, say d ∈ D where D is a
finite set. For simplicity we assume that dt is observable and evolves as an
exogenous first order Markov process.

We make the following assumptions. The payoff relevant characteristics,
which will be denoted by ω ∈ Ω, take values on a finite set of points. There
will be two types of actions (or controls); actions which take values on a finite
space, denoted by m ∈M, and actions which take values on a continuum, to
be denoted by x ∈ X. It will be assumed that the continuous action of one
firm is neither observed by the other firm nor a determinant of the profits of
the other firm (this because we want to avoid signals which take values on
a continuum). However the discrete actions of the firm are not restricted in
either of these two ways. Both the continuous and discrete action can affect
current profits and/or the probability distribution of payoff relevant random
variables3.

2Since we were motivated by our interest in dynamic oligopolies we will call our players
”firms” and their payoffs as ”profits”.

3Note that these assumptions are similar to those used in the full information games
considered by Ericson and Pakes (1995), and, as they do their, we could have derived the
assumption that Ω is a finite set from more primitive conditions.
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For notational simplicity we will assume that there is only one state vari-
able, one discrete control, and one continuous control for each firm; i.e. that
Ω ⊂ Z+, M ⊂ Z+, and X ⊂ R. In different models both the actions and
the states will have different interpretations. Possibilities for actions include;
maintenance and investment decisons, launching new products or sending a
signal of the intention to launch, bidding in an auction and so on.

Letting i index firms, realized profits for firm i in period t are given by

π(ωi,t, ω−i,t, mi,t, m−i,t, xi,t, dt), (1)

where π(·) : Ωn ×Mn × R ×D → R. Firms will be assumed to know their
own (ω, x,m), but not necessarily their competitors (ω,m). We note that, in
general, there may be a component of ωi,t which has an impact on one firm’s
profits but not its competitors’ profits (e.g. a component of ωi,t may be the
cost of x which varies across firms).

We assume that ωi,t evolves over time with random firm specific outcomes,
to be denoted by ηi,t, and a common shock that affects the ω’s of all firms in
a given period, say νt. Both η and ν take on values in a finite subset of Z+,
say in Ω(η), Ω(ν) respectively. The transition rule is written as

ωi,t+1 = F (ωi,t, ηi,t+1, νt+1), (2)

where F : Ω×Ω(η)×Ω(ν) → Ω. The distribution of η is determined by the
family

Pη = { Pη(.| m,x, ω); m ∈M, x ∈ X, ω ∈ Ω}, (3)

and is controlled by firm’s choice of m and x, while the distribution of ν is
given exogenously and equal to

{p(ν); ν ∈ Ω(ν)}.

Note that at least in this formulation of our problem we do not allow either
the states or the actions of a firm’s competitors to effect the evolution of the
firm’s own state variables.

The information set of each player at period t is, in principal, the history
of variables that the player has observed up to that period. We restrict our-
selves to a class of games in which strategies are a mapping from a subset of
these variables, in particular to the variables that are observed and are either
“payoff” or “informationally” relevant, where these two terms are defined as
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follows. The ”payoff relevant” variables are defined, similar to Maskin and
Tiorle (2001), to be those variables that are not current controls and affect
the profits of at least one of the firms. In terms of equation (1), (ωi,t, ω−i,t, dt)
will be payoff relevant. Observable variables that are not payoff relevant will
be informationally relevant if and only if either; (i) even if no other agent’s
strategy depend upon the variable player i can improve its expected dis-
counted value of net cash flows by conditioning on it (which implies that
player i’s optimal strategy depends on the variable), or (ii) even if player
i’s strategy does not condition on the variable there is at least one player
j whose optimal strategy will depend on the variable. For example, say all
players know ωj,t−1 but player i does not know ωj,t. Then even if player j
does not condition its strategy on ωj,t−1, since ωj,t−1 can contain information
on the distribution of the payoff relevant ωj,t, player i will generally be able
to gain by conditioning its strategy on that variable.4 As illustrated by the
example, the variables that are informationally relevant at any point in time
depend upon which of the payoff relevant variables are observed.

For simplicity we limit ourselves to the case where information is either
known only to a single agent (it is “private”), or to all agents (it is “public”).
Different models will allocate different states and actions to the publicly and
privately observed components. The publicly observed vector will be denoted
by ξt ∈ Ω(ξ), and the privately observed vector by zi,t ∈ Ω(z). We will only
consider games where both #Ω(ξ) and #Ω(z) are finite. We use the finiteness
condition intensively in what follows and consider conditions on primitives
which generate it in the next subsection.

If both decisions and the evolution of states conditional on those decisions
depend only on (ξt, zi,t), (ξt, zi,t) evolves as a Markov process. More formally
for all t

ξt+1 = Gξ(ξt, νt+1, εt+1), (4)

where the distribution of εt+1 is given by the family

Pε = { Pε(·| ξ, x, m, z, η, (ξ, x, m, η, z) ∈ Ω(ξ)× (X ×M× Ω(η)× Ω(z))n },
(5)

and hence can depend on {zi,t−1} (as it will if past information is revealed
by current play). εt+1 contains the payoff and informationally relevant in-
formation that is revealed over the current period and Gξ(·) deletes public

4Note that these defintions will imply that an equilibrium in our restricted strategy
space will also be an equilibrium in the general history dependent strategy space.
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information which was either payoff or informationally relevant in t but no
longer is in t + 1.

Similarly
zi,t+1 = Gz(ξt, zi,t, µi,t+1), (6)

and the distribution of µi,t+1 is given by the family

Pµ = { Pµ(·| ξ, x, m, z, η), (ξ, x, m, η, z) ∈ Ω(ξ)× (X×M×Ω(η)×Ω(z))n }.
(7)

Here µi,t+1 contains the private information revealed to firm i over the cur-
rent period and and Gz(·) deletes the private information which is no longer
relevant.

Since the agent’s information at the time actions are taken consists of
Ji,t = (ξt, zi,t) ∈ Ji, we assume strategies are measurable Ji,t, i.e.

x(Ji,t) : J i → X, and m(Ji,t) : J i →M.

The timing of the game is as follows. At the beginning of each period
there is a realization of {µ, ν, ε, }. Firms then update their information sets
with the updating functions (6) and (4). They then simultaneously decide
on {mi,t, xi,t}nt

i=1. Finally we assume that firms maximize their expected
discounted value of profits and have a common discount rate β , where 0 <
β < 1.

This formulation enables us to account for a range of institutional struc-
tures. The original Ericson and Pakes (1995) complete information assump-
tions is the special case where ξt = (ωi,t, ω−i,t) and εt = (ηi,t, η−i,t). When
there is asymmetric information ε can depend on the actions of agents, as
when signals are sent, and its contents can depend on both the private infor-
mation of all agents in the preceding period (on ω ∈ Ωn) and on the private
information obtained in the current period (on η ∈ Ω(η)n). A simple ex-
ample of a game with private information occurs when each firm knows the
current value of its own ω but only last period’s value of the ω’s of its com-
petitors (then ξt = (ωi,t−1, ω−i,t−1) and µi,t = ηi,t, or equivalently zi,t = ωi,t).
These are the games considered in the recent econometric literature on dy-
namic games (see Pakes, Ostrovsky and Berry, 2007, and Bajari, Benkard
and Levin, 2007)5.

5They are particularly simple because in an Applied Markov Equilibrium, as defined
below, these assumptions insure that agents never have to keep in memory more informa-
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2 An Applied Markov Equilibrium.

Let s combine the information sets of all agents active in a particular period,
that is s = (J1, . . . , Jn) when each Ji has the same public component ξ. We
will say that Ji = (zi, ξ) is a component of s if it contains the information
set of one of the firms whose information is combined in s. Note also that we
can write s more compactly as s = (z1, . . . , zn, ξ). So S = {s : z ∈ Ω(z)n, ξ ∈
Ω(ξ), for 0 ≤ n ≤ n} lists the possible states of the world.

Any set of Markov strategies for all agents active at each s ∈ S , together
with an initial condition, defines a Markov process on S. Recall that our
assumptions insure that S is a finite set. As a result each possible sample
path of this Markov process will, in finite time, wander into a recurrent subset
of the states in S, say R ⊂ S, and once in R will stay within it forever. That
is though there may be more than one recurrent class associated with any set
of policies, if a sample path enters a particular R, a point, s, will be visited
infinitely often if and only if s ∈ R. Moreover the empirical distributions
of visits to transitions in R will converge to a Markov transition kernel, say
pe,T ≡ {pe(s′|s) : (s′, s) ∈ R2}, while the empirical distribution of visits on
R will converge to an invariant measure, say pe,I ≡ {pe(s) : s ∈ R}. We let
pe = (pe,T , pe,I). It is understood that pe is indexed by a set of policies and
a particular choice of a recurrent class associated with those policies.

We now turn to our notion of Applied Markov Equilibrium. We build it
from equilibrium conditions which could, at least in principle, be consistently
tested. To obtain a consistent test of a condition at a point we must, at least
potentially, observe that point infinitely often. So we limit ourselves to a
definition of equilibrium that places conditions only at points that are in a
recurrent class generated by that equilibrium.

As we shall see this weakens the traditional Nash conditions. In fact it
generates equilibria which are closely related to the “self-confirming equilib-
ria” introduced by Fudenberg and Levine (1993a), and share some of that
equilibria’s interpretive advantages6. On the other hand ours is probably the
strongest notion of equilibrium that one might think could be empirically
tested, as it assumes that the applied researcher doing the testing can access

tion than that contained in the prior period’s ω and the current ηi. Note that whenever
ω−i has an independent effect on the profits of firm i (independent of other information
known to the agent), and profits are privately observed, then µi at least contains (ηi, πi).

6See also Dekel, Fudenberg and Levine (2004) for an anlysis of self confirming equilib-
rium in games with asymmetric information.
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the union of the information sets available to the agents playing the game.
We come back to these issues, and their relationship to empirical work, after
we provide our definition of equilibrium.

Definition: Applied Markov Equilibrium. An applied Markov Equilib-
rium consists of

• A subset R ⊂ S;

• Strategies (x∗(Ji), m
∗(Ji)) for every Ji which is a component of any

s ∈ S;

• Expected discounted value of current and future net cash flow con-
ditional on realizations of η and a value for the discrete decision m,
say W (η, m|Ji), for each (η, m) ∈ Ω(η) ×M and every Ji which is a
component of any s ∈ S,

such that

C1: R is a recurrent class. The Markov process generated by any
initial condition s0 ∈ R, and the transition kernel generated by {(x∗, m∗)},
has R as a recurrent class (so, with probability one, any subgame starting
from an s ∈ R will generate sample paths that are within R forever).

C2: Optimality of strategies on R. For every Ji which is a component
of an s ∈ R, strategies are optimal given W (·), that is (x∗(Ji), m

∗(Ji)) solve

maxm∈Msupx∈X

[∑
η

W (η, m|Ji)pη(η|x, m, ωi)

]
,

and

C3: Consistency of values on R. Take every Ji which is a component
of an s ∈ R. Let η(x∗(Ji), m

∗(Ji), ωi) ≡ {η : p(η|x∗(Ji), m
∗(Ji), ωi) > 0}. For

every η ∈ η(x∗(Ji), m
∗(Ji), ωi)

W (η, m∗(Ji)|Ji) = πE
(
Ji, m

∗(Ji), x
∗(Ji)

)
+
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β
∑
J
′
i

{∑
η̃

W (η̃, m∗(J
′

i )|J
′

i )p(η̃|x∗(J ′

i ), m
∗(J

′

i ), ω
′

i)
}

pe(J
′

i |Ji, η),

and

πE(Ji; m
∗(Ji), x

∗(Ji)) ≡
∑
J−i

πi

(
ωi, m

∗(Ji), x
∗(Ji), ω−i, m

∗(J−i), dt

)
pe(J−i|Ji),

where{
pe(J

′

i |Ji, η) ≡ pe(J
′
i , η|Ji)

pe(η|Ji)

}
J
′
i

, and

{
pe(J−i|Ji) ≡

pe(J−i, Ji)

pe(Ji)

}
J−i

. ♠ (8)

Condition C2 states that at every Ji which is a component of an s ∈ R
agent i chooses policies which are optimal with respect to the evaluations of
outcomes determined by {W (η, m|Ji) : η ∈ Ω(η), m ∈ M}. Condition C3
states that at least for (η, m) combinations that have positive probability on
the equilibrium path, these evaluations are the values that would be gener-
ated by pe and the primitives of the problem if the agent played equilibrium
strategies.

A few points are worth noting before moving on. First conditions C2 and
C3 apply only to points in R. In particular policies at points outside of R
need not be optimal while the evaluations {W (η, m|Ji)} need not be correct
for Ji not a component of an s ∈ R. Nor do we require consistency of the
evaluations for the W (·)’s associated with points in R but outcomes which
have zero probability given equilibrium play7.

Second none of our conditions are formulated in terms of beliefs about
either the play or the “types” of opponents. There are two reasons for this
to be appealing to the applied researcher. First, as beliefs are not observed,
they can not be directly tested. Second, as we will show presently, it implies
that we can compute equilibria without ever explicitly calculating posterior
distributions.

7To see this last point note that the W (η, m|Ji) for η /∈ η(x∗(Ji),m∗(Ji), Ji) or for
m 6= m∗ are not required to satisfy C3. The only conditions on these evaluations are the
conditions in C2; i.e. that chosing an m 6= m∗ and any x, or an x different x∗ when m = m∗

would lead to a perceived evaluation which is less than that from the optimal policy. The
fact that our conditions do not apply to points outside of R or to η /∈ η(x∗(Ji),m∗(Ji), Ji)
implies that the conditional probabilities in equation (8) are well defined.
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Comment 1. Our definition of Applied Markov Equilibria is closely re-
lated to the definition of Self Confirming Equilibria in Fudenburg and Levine
(1993a). Self Confirming Equilibria weaken the standard Nash equilibrium
conditions by requiring that each player’s actions are optimal given the
player’s belief about opponent’s actions but that these beliefs need only
be correct along the equilibrium path (so no player observes actions which
contradicts his beliefs). Our equilibrium conditions explicitly introduce the
evaluations that the agents use to determine their optimal actions. These
evaluations, together with the primitives of the problem, allow us to con-
struct values for play along the equilibrium path. Our equilibrium condition
insures that these values are consistent with optimizing behavior on points
that are visited infinitely often. Of course data generated from a Self Con-
firming Equilibrium will also produce a set of evaluations. Moreover those
evaluations will generate values that satisfy our AME conditions. However
there is not a one to one relationship between the two concepts. This be-
cause the correct valuations could also be generated by incorrect perceptions
on competitors’ actions. In particular player i may have incorrect beliefs
about the play of players j and k if those beliefs generate consistent values
for the game. In addition our consistency requirement C3 is defined only for
points in R, and imposes no consistency conditions at points outside of R
(though the game may start at points outside of R). Self confirming equilib-
ria requires that players have correct beliefs on opponents’ actions also for
points on the equilibrium path that are not in R .

Comment 2. We now come back to the sense in which we can construct a
consistent test of our equilibrium conditions. To determine what tests can be
run we need to specify what information the empirical researcher has at its
disposal. At best the empiricist will know the union of the information sets of
all players at each period, that is our st. To determine what is testable when
this is the case it will be useful to use a distinction introduced by Pakes and
McGuire (2001). They partition the points in R into interior and boundary
points. Points in R at which there are feasible (though inoptimal) strategies
which can lead to a point outside of R are labelled boundary points. Interior
points are points that can only transit to other points in R no matter which
of the feasible policies are chosen (equilibrium or not). At interior s ∈ R we
can obtain consistent estimates of {W (η, m|Ji), m ∈M, η ∈ Ω(η)} for every
Ji which is a component of s. This plus the fact that the policies are observed
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implies that we can obtain a consistent test of C2 for all such points. However
at an s which is a boundary point we only obtain consistent estimates of
the {W (·)} for (η, m) ∈ (η(x∗(Ji), m

∗(Ji), ωi), m
∗(Ji)), that is for the states

which are observed with positive probability given optimal strategies. This
implies that we can only obtain a consistent test for a restricted notion of
the optimality of strategies. In particular can not test against strategies that
generate a positive probability of transiting to a point outside of the recurrent
class. A test of the full set of our equilibrium conditions is provided in section
3.2 below.8

2.1 The Restriction to a Finite State Space.

In our definition of an AME we restricted ourselves to games where the
state space was finite, and the next subsection provides an algoirthm which
computes AME’s for games with finite state spaces. We now breifly consider
conditions which insure that the equilibrium we compute for a game in which
we restrict the state space to be finite, will also be an equilibrium to the more
general game in which strategies may be functions of the entire history of
the game.

We have already assumed that there was: (i) an upper bound to the
number of firms simultaneously active, (ii) each firm’s physical states (our
ω) could only take on a finite set of values, (iii) the discrete action was chosen
from a finite feasible set, and (iv) the continuous action is not observed by
the agent’s opponents and affects the game only through its impact on the
transition probabilities of the physical state. These restrictions would insure
the condition that an equilibrium to a game with a finite state space is an
equilbrium to a game with a more general state space were this a game
of complete information (as in Ericson and Pakes, 1995)9. In our context

8Of course it is likely that the empiricist will observe less than st, perhaps only the
publically available information in each period. Provided the empiricist knows (or has esti-
mated) the primitive parameters, testing would then consist of computing the equilibrium
associated with those primitives, and then testing whether the observed probabilities of
transition from one public information set to another are consistent with the equilibrium
calculations.

9They would also insure finiteness in a game with asymmetric information where the
only source of asymmetric information is a firm specific state variable which is distributed
independently over time (as in Bajari, Benkard and Levin, 2007, or Pakes Ostrovsky and
Berry, 2007). In this case if the indepedently distributed private information took on an
infinite range of values, then the strategies and values could take on an infinite range of

12



these restrictions insure that the payoff relevant random variables take values
on a finite set of states, but they do not guarantee that there are a finite
dimensional set of informationally relevant random variables; i.e. optimal
strategies could depend on an infinite dimensional space of informationally
relevant variabgles.

There are at least two possible ways to insure that the equilibrium we
compute to our finite state game is an equilibrium to the unrestricted game.
One is to consider a class of games in which the agents would not gain by dis-
tinguishing between more than a finite number of states. In general whether
or not this is possible will depend on the functional forms and institutions
relevant for a given situation. We provide one condition which insures it is
possible presently. The second way to insure finiteness is to assume there are
bounded cognitive abilities and these bounds generate a finite state space.
The most obvious example would be a direct bound on memory (i.e. that
agents can not remember what occured more than a finite number of periods
prior), but there also could be bounds on complexity or perceptions that
have a similar effect.

In our computational example we compute finite state equilibria gener-
ated by both types of assumptions. Indeed one of the questions we adress
is whether the different ways we use to obtain finiteness, all three of which
seem a priori reasonable, generate equilibria with noticeably different poli-
cies. The example of an institutional arrangement that insures that the
equilibrium we compute for our finite state space is an equilibrium to the
unrestricted game is one in which there is periodic simultaneous revelation
of all variables which are payoff relevant to any agent.

Claim 1 . Periodic Revelation of Information. If for any initial st

there is a T ∗ < ∞ and a τ (whose distribution may depend on st) which is less
than or equal to T ∗ with probability one, such that all payoff relevant random
variables are revealed at t− τ , then if we construct an equilibrium to a game
whose strategies are restricted to not depend on information revealed more
than τ periods prior to t, it is an equilibrium to a game in which strategies
are unrestricted functions of the entire history of the game. Moreover there
will be optimal strategies for this game which, with probability one, only take
distinct values on a finite state space, so #|S| is finite. ♠

Sketch of Proof. Let hi,t denote the entire history of variables observed by

values, but the agents would only need to keep track of a finite set of continuation values.
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agent i by time t, and Ji,t denote that history truncated at the last point in
time when all information was revealed. Let (W ∗(·|Ji), x

∗(Ji), m
∗(Ji), p

e(·|J
i
))

be AME strategies, valuations, and probability distributions when agents
condition both their play and their expectations on Ji (i.e. they satisfy
C1, C2, C3 above). Fix Ji = Ji,t. what we much show is that

(W ∗(·|Ji,t), x
∗(Ji,t), m

∗(Ji,t))

satisfy C1, C2, C3 if the agents’ condition their expectations on hi,t.
For this it suffices that if the ’∗’ strategies are played then for every

possible (J ′i , J−i),

pe(J ′i |Ji,t, η) = Pr(J ′i |hi,t, η), and pe(J−i|Ji,t) = Pr(J−i|hi,t).

If this is the case strategies which satisfy the optimality comditions with
respect to {W ∗(·|Ji,t)} will satisfy the the optimality comditions with respect
to {W (·|hi,t)}, where it is understood that the latter equal the expected
discounted value of net cash flows conditional on all history.

We prove the second equality by induction (the proof of the first is simi-
lar and simpler). For the intial condition of the inductive argument use the
period in which all information is revealed. Then pe(J−i|Ji) puts probabil-
ity one at J−i = J−i,t as does Pr(J−i|hi). For the inductive step, assume
Pr(J−i,t∗|hi,t∗) = pe(J−i|Ji,t∗). What we must show is that if agents use the
∗ policies then the distribution of J−i,t∗+1 = (µ̃−i, ε̃, J−i,t∗) conditional on
hi,t∗+1 = (µ̃i, ε̃, hi,t∗) depends only on Ji,t∗+1 = (µ̃−i, ε̃, Ji,t∗).

Use equations (6) and (5) to define

µ̃−i = G−1
z (z−i,t∗+1, z−i,t∗), µ̃i = G−1

z (zi,t∗+1, zi,t∗), ε̃ = G−1
ξ (ξt∗+1, ξt∗),

and note that those assumptions imply that given the ∗ policies the distribu-
tion of (µ̃−i, µ̃i, ε̃) conditional on (hi,t∗ , h−i,t∗) depends only on (Ji,t∗ , J−i,t∗).

Since for any events (A, B, C), P r(A|B, C) = Pr(A, B|C)/Pr(B/C)

Pr(J−i,t∗+1|hi,t∗+1) =
Pr(µ̃−i, µ̃i, ε̃, J−i,t∗|hi,t∗)

Pr(µ̃i, ε̃|hi,t∗)
.

Looking first to the numerator of this expression, we have

Pr(µ̃−i, µ̃i, ε̃, J−i,t∗|hi,t∗) =
∑

J−i,t∗

Pr(µ̃−i, µ̃i, ε̃, J−i,t∗|Ji,t∗ , J−i,t∗)Pr(J−i,t∗|hi,t∗),

and from the hypothesis of the inductive arguement Pr(J−i,t∗|hi,t∗) = pe(J−i,t∗|Ji,t∗).
A similar calculation for the denominator concludes the proof. ♠
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3 An AI Algorithm to compute an AME.

In this section we show that we can construct an Applied Markov Equilib-
rium using a reinforcement learning algorithm. As a result our equilibria can
be motivated as the outcome of a learning process.10 In the reinforcement
learning algorithm players have valuations regarding the continuation game
and they choose their actions optimally given those valuations. Realizations
of random variables whose distributions are determined by those actions are
then used to update their evaluations. So in the algorithm players choose
actions optimally given their evaluations, though their evaluations need not
be correct. Note also that players are not engaged in intentional experi-
mentation in the algorithm, however the algorithm can be designed to insure
that many sample paths will be explored by providing sufficiently high initial
valuations11.

The algorithm provided in this section is iterative, and we begin by de-
scribing the iterative scheme. The rule for when to stop the iterations consists
of a test of whether the equilibrium conditions defined above are satisfied,
and we describe the test immediately after presenting the iterative scheme.
We note that since our algorithm is a simple reinforcement learning algo-
rithm, an alternative approach would have been to view the algorithm itself
as the way players learn the values needed to choose their policies, and jus-
tify the output of the algorithm in that way. A reader who subscribes to the
latter approach may be less interested in the testing subsection12. We con-
clude this section with a brief discussion of the properties of the algorithm;
both its computational properties, and its relationship to various conceptual
issues discussed in the economic literature.

10This is similar to in Fudenberg and Levine (1993a), but in our case the learning is
about the value of alternative outcomes, while in their case it is about the actions of
opponent players.

11This differs from Fudenberg and Kreps (1994) and Fudenberg and Levine (1993b) who
considered models with active experimentation and studied the role of experimentation in
the convergence of the learning process to a Nash equilibrium.

12On the other hand, there are several issues that arise were one to take the learning
approach seriously, among them; the question of whether (and how) an agent can learn
from the experience of other agents, and how much information an agent gains about its
value in a particular state from the agent’s experience in related states.
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3.1 The Iterative Procedure.

Our algorithm approximates the W ≡ {W (η, m|J); η ∈ Ω(η), m ∈ M, J ∈
J } directly using techniques analogous to those used in the stochastic ap-
proximation (or reinforcement learning) literature (see footnote 3). The al-
gorithm is iterative. An iteration, say k, is defined by couple

• its location, say Lk = (Jk
1 , . . . Jk

n(k)) ∈ S, defines the information set of

the n(k) agents active at iteration k13, and

• a set of evaluations, W k.

So to iterate we must update both Lk and the W k.
Schematically the updates are done as follows. First the algorithm cal-

culates policies for all agents active at Lk. These policies are chosen to
maximize the agents’ values (that is to solve condition C2) given the eval-
uations in memory, the W k. Then computer generated random draws from
the distributions which govern the innovations to both the public and private
sources of information (from the distributions in equations (3), (5) and (7))
conditional on those policies and Lk = (Jk

1 , . . . Jk
n(k)) are taken. Those draws

are used to update both Lk and W k.
The location is updated using the updating functions in equations (4) (for

the public information) and (6) (for the private information) for each of the
active agents. This determines Lk+1. Next we update W k. The kth iteration
only updates the components of W associated with Lk (it is asynchronous).
It treats the updated Jk+1

i = (ξk+1, zk+1
i ) as a random draw on the next

period’s information set conditional on the chosen policies, and updates the
W k in memory at Lk with an average of the values at the updated state (as
determined by the information in memory) and the initial values at Lk; a
procedure which generates a W k+1 which is an average of the values obtained
at Lk over all past iterations. We now formalize this procedure and then
discuss some of its properties.

Details. The reinforcement learning part of the algorithm consists of an
iterative procedure and subroutines for calculating initial values and profits.
We begin with the iterative procedure. Each iteration starts with a location,
Lk, and the objects in memory, say Mk = {Mk(J) : J ∈ J }.

13Active agents include all incumbents, and in models with entry, the potential entrants.
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Memory. The elements of Mk(J) specify the objects in memory at itera-
tion k for information set J . Mk(J) contains

• a counter, hk(J), which keeps track of the number of times we have
visited J prior to iteration k, and if hk(J) > 0 it contains

• W k(η, m|J) for m ∈M and η ∈ Ω(η).

If hk(J) = 0 there is nothing in memory at location J . If we require
W (·|J) at a J at which hk(J) = 0 we have an initiation procedure which
sets W k(η, m|Ji) = W 0(η, m|Ji). We come back to a discussion of possible
choices for W 0 below.

Policies and Random Draws for Iteration k. For each Jk
i which is a

component of Lk call up W k(·|Jk
i ) from memory and choose (xk(Jk

i ), mk(Jk
i ))

to

maxm∈Msupx∈X

[∑
η

W k(η, m|Jk
i )pη(η|x, m, ωk

i )

]
.

With this {xk(Jk
i ), mk(Jk

i )} use equation (1) to calculate the realization of
profits for each active agent at iteration k14. These same policies, {xk(Jk

i ), mk(Jk
i )},

are then substituted into the conditioning sets for the distributions of the in-
novations to the public and private information sets (the distributions in 3,
5 and 7), and they, in conjunction with the information in memory at Lk,
determine a distribution for those innovations. A pseudo random number
generator is then used to obtain a draw on those innovations, i.e. to draw(
(ηk+1

i , µk+1
i )nk

i=1, ε
k+1, νk+1

)
.

Updating. Use
(
(ηk+1

i , µk+1
i )nk

i=1, ε
k+1, νk+1

)
and the equations which de-

termine the laws of motion of the public and private information (equations
(4) and (6)) to obtain the updated location of the algorithm

Lk+1 = [Jk+1
1 , . . . , Jk+1

nk+1 ].

14If d is random, then the algorithm has to take a random draw on it before calculating
profits.
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To update the W it is helpful to define a “perceived” value of play at iteration
k after profits and the random draws are realized, i.e. to define

V k+1(Jk
i ) = π(ωk

i , ω
k
−i, m

k
i , m

k
−i, x

k
i , d

k) + (9)

maxm∈Msupx∈X β

[∑
η

W k(η, m|Jk+1
i )pη(η|x, m, ωk+1

i )

]
.

Note that to calculate V k+1(Jk
i ) we need to first find and call up the infor-

mation in memory at locations {Jk+1
i }nk+1

i=1 .15 Once these locations are found
we keep a pointer to them, as we will need to return to them in the next
iteration.

For the intuition behind the update for W k(·|Jk
i ) note that were we to

substitute the equilibrium W ∗(·|Jk+1
i ) and πE(·|Jk

i ) for the W k(·|Jk+1
i ) and

πk(·|Jk
i ) in equation (9) above and use equilibrium policies to calculate expec-

tations, then W ∗(·|Jk
i ) would be the expectation of V ∗(·|Jk

i ). Consequently
we treat V k+1(Jk

i ) as a random draw from the integral determining W ∗(·|Jk
i )

and update the value of W k(·|Jk
i ) as we do an average, i.e. we set

W k+1(η, m|Jk
i )−W k(η, m|Jk

i ) =
1

A
(
hk(Jk

i )
) [V k+1(Jk

i )−W k(η, m|Jk
i )], (10)

where A(·) : Z+ → Z+, is increasing, and satisfies Robbins and Monroe’s
conditions (1956)16. For example A(hk(Jk

i )) = hk(Jk
i ) + 1, the number of

times point Jk
i had been visited by iteration k +1, would satisfy those condi-

tions and produces an estimate of W k(Jk
i ) which is the simple average of the

V r(Jr
i ) over the iterations at which Jr

i = Jk
i . However since the early values

of V r(·) are typically estimated with more error than the later values, it is
often useful to give them lesser weight. We come back to this point below.

Completing The Iteration. We now replace the W k(·|J i
k) in memory at

location Jk
i with W k+1(·|J i

k) (for i = 1, . . . , nk) and use the pointers obtained

15The burden of the search for these states depends on how the memory is structured,
and the efficiency of the alternative possiblities depend on the properties of the example.
As a result we come back to this question when discussing the numerical example below.

16Those condition are that the sum of the weights of each point visited infinitely often
must increase without bound while the sum of the weights squarred must remain bounded.
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above to find the information stored in memory at Lk+1. This completes the
iteration (we are now ready to compute policies for the next iteration). The
iterative process is periodically stopped to run a test of whether the policies
and values the algorithm outputs are equilbirium policies and values.

3.2 Testing For an Equilibrium.

This subsection assumes we have a W vector which is outputted at some
iteration of the algorithm, say W = W̃ , and provides a test of whether
that vector generates AME policies and values on a recurrent subset of S
determinned by W̃ .

Once we substitute W̃ into condition C2 we determines policies for all
agents active at each s ∈ S. These policies determine the probabilities of
transiting to any future state. Let the probability of transiting from s to s′ be
denoted by q(s′, s|W̃ ), where 0 ≤ q(s′, s|W̃ ) ≤ 1, and

∑
s′∈S q(s′, s|W̃ ) = 1.

Now order the states and arrange these probabilities into a row vector in that
order, say q(s|W̃ ). Do this for each s ∈ S, and combine the resultant rows
into a matrix whose rows are ordered by the same order used to order the
elements in each row. The result is a Markov matrix (or transition kernel)
for the industry structures, say Q(·, ·|W̃ ). This matrix defines the Markov
process for industry structures generated by W̃ . Q(·, ·|W̃ ) is a finite state
kernel and so any sample path generated by it and any initial condition will,
with probability one in a finite number of periods, enter a recurrent class, say
R(W̃ , ·) ⊂ S, and once within it will stay within it forever. Our test consists
of generating an R(W̃ , ·) ⊂ S and testing whether the {W̃ (s); s ∈ R(W̃ , ·)}
satisfy the equilibrium conditions (C2 and C3 above).

To obtain our candidate for R(W̃ , ·), we start at any s0 and use Q(·, ·|W̃ )
to simulate a sample path {sj}J1+J2

j=1 . Let R(J1, J2, ·) be the set of states
visited at least once between j = J1 and j = J2, and P(R(J1, J2, ·)) be
the empirical measure of how many times each of these states was visited.
Then, if we set J1 = J1(J2) and consider sequences in which both J1(J2) and
J2 − J1(J2) → ∞, R(J2, ·) ≡ R(J1(J2), J2, ·) must converge to a recurrent
class of the the process Q(·, ·|W̃ ), and hence satisfies our condition C1. Call
the recurrent subset of points obtained in this way R(W̃ ). As we shall see it
typically does not take long to generate a million iterations of the stochastic
algorithm. As a result it is easy to simulate several million draws, throw out
a few million, and then consider the locations visited by the remainder as
the recurrent class.
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Note that we have constructed Q(·, ·|W̃ ) in a way that insures that condi-
tion C2 is satisfied everywhere. So what remains is to test whether condition
C3 is satisfied at every s ∈ R(W̃ ). One way to construct a test of this
condition is already in the literature. Compute the integrals on the right
hand side of the conditions defining the equilibrium W in C3 using the poli-
cies generated by W̃ to construct the probability distributions, pe(J ′i |Ji) and
pe(J−i|Ji), needed to compute the integrals. Then base the test statistic on
the difference between the computed values and W̃ . This is analogous to the
test used by Pakes and McGuire (2001) and, as noted their, it is computa-
tionally burdensome. Even for moderately sized problems the computational
burden of the test can greatly exceed the burden of the iterations leading to
the test. To avoid this problem we now provide a test of condition C3 which
does not require explicit computation of the integrals on the right hand side
of that condition, and has a transparent interpretation as a measure of the
extent of approximation error in our estimates.

Instead of computing the right hand side of the integrals in condition C3
directly the test approximates them using simulation and then accounts for
the simulation error in the approximations. That is our test consists of ob-
taining the differences between the estimates of W̃ (η, m∗(W̃ )|Ji) in memory,
and an approximation to the expected discounted values of future net cash
flows that an agent with the information set Ji and the random draw ηi would
obtain were all agents using the policies generated by W̃ . The approximation
is a sample average of the discounted value of net cash flows from simulated
sample paths starting at (Ji, ηi). The squared differences between the W̃ and
the average of the discounted value over the simulated sample paths is a sum
of; (i) the sampling variance in the average of the discounted value of the
simulated sample paths (we will refer to this as the sampling variance term),
and (ii) the difference between the expectation of the discounted net cash
flows from the simulated paths and the relevant components of W̃ (we will
refer to this as the “bias” term). We subtract a consistent estimate of the
sampling variance term from this squared difference to obtain a test statistic
which, at least in the limit, will depend only on the bias term and have an
interpretation as the percentage bias in our estimates.

Details. The test is constructed as follows. Start at an initial s0 ∈ R and
an initial draw on η for each Ji component of s0, i.e. at a set of couples
{(J0

i , η0
i )}n0

i=1, where n0 is the number of active agents at s0. Now simulate
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draws for
(
(η1

i , µ
1
i )

n0

i=1, ε
1
)

using the policies generated by W̃ . Use these

simulation draws to compute

Ŵ l=0(η, m∗(J0
i )|J0

i ) ≡ π(J0
i , J0

−i, m
∗(J0

i ), m∗(J0
−i), x

∗(J0
i ), d0)+βW̃ (η1

i , m
∗(J1

i )|J1
i ),

where it is understood that m∗(·) provides the policies generated by W̃ , and

J1
i = (ξ1, z1

i ), ξ1 = Gξ(ξ
0, ν0, ε1), z1

i = Gz(ξ
0, z0

i , µ
1
i ),

for each of the n0 points (J0
i , η0

i ).
Then, for i = 1, . . . , n, keep in memory at a location which is (Ji, ηi) spe-

cific: (i), Ŵ 0(η, m∗(J0
i )|J0

i ), (ii), the square of this, or ˆSW
0
(η, m∗(J0

i )|J0
i ) =

Ŵ 0(η, m∗(J0
i )|J0

i )2, and (iii) an initialized counter, say hl=0(Ji, ηi) = 1.
Now consider the simulated locations {(J1

i , η1
i )}n1

i=1. At each of these
points simulate as above and compute

Ŵ 1(η, m∗(J1
i )|J1

i ) ≡ π(J1
i , J1

−i, m
∗(J1

i ), m∗(J1
−i), x

∗(J1
i ), d1)+βW̃ (η2

i , m
∗(J2

i )|J2
i ).

If (J1
i , η1

i ) is the same as one of the values (J0
i , η0

i ), average the two values

of Ŵ (·) and ˆSW (·) at that location, call the averages ˆAW
1
(·) and ˆASW

1
(·),

and keep them together with a value for hl(·) equal to 2 in memory at that
location. If a particular (J1

i , η1
i ) was not visited prior to this start a new

location, setting Ŵ 1(·|·), ˆSW
1
(·), and h1(J1

i , η1
i ) as above. We continue in

this manner until a large number of periods are simulated.
If we let E take expectations over the simulated random draws then

E

( ˆAW (ηi, m
∗(Ji)|Ji)

W̃ (ηi, m∗(Ji)|Ji)
−1

)2

= E

( ˆAW (ηi, m
∗(Ji)|Ji)− E

[
ˆAW (ηi, m

∗(Ji)|Ji)
]

W̃ (ηi, m∗(Ji)|Ji)

)2

(11)

+

(E
[

ˆAW (ηi, m
∗(Ji)|Ji)

]
− W̃ (ηi, m

∗(Ji)|Ji)

W̃ (ηi, m∗(Ji)|Ji)

)2

.

The first term after the equality in (11) is the sampling variance, while the
second term is the bias, both expressed as a fraction of the evaluations out-
putted by the program.

Moreover if we let

ˆV ar
( ˆAW (ηi, m

∗(Ji)|Ji)

W̃ (ηi, m∗(Ji)|Ji)

)
≡ (12)
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ˆASW (ηi, m
∗(Ji)|Ji)

h(ηi,Ji)
h(ηi,Ji)−1

− ˆAW (ηi, m
∗(Ji)|Ji)

2

W̃ (ηi, m∗(Ji)|Ji)2
,

then

E
[

ˆV ar
( ˆAW (ηi, m

∗(Ji)|Ji)

W̃ (ηi, m∗(Ji)|Ji)

)]
= E

( ˆAW (ηi, m
∗(Ji)|Ji)− E

[
ˆAW (ηi, m

∗(Ji)|Ji)
]

W̃ (ηi, m∗(Ji)|Ji)

)2

,

and we have an unbiased estimate of the sampling variance. Consequently if

ˆBias(AW (ηi, m
∗(Ji)|Ji))

2 ≡ (13)( ˆAW (ηi, m
∗(Ji)|Ji)

W̃ (ηi, m∗(Ji)|Ji)
− 1

)2

− ˆV ar
( ˆAW (ηi, m

∗(Ji)|Ji)

W̃ (ηi, m∗(Ji)|Ji)

)
,

then ˆBias(AW (ηi, m
∗(Ji)|Ji))

2 is an unbiased estimate of the square of the
percentage bias in ˆAW (ηi, m

∗(Ji)|Ji)). Since higher order moments of this
estimate are finite, any weighted average of independent estimates of the bias
terms over the recurrent class of points will converge to the same weighted
average of the true bias term across these points (a.s.).

Let PR(W̃ )(s) provides the fraction of times point s ∈ R(W̃ ) ⊂ S is
visited in constructing R (i.e. visited between iterations J1(J2) and J2 in
that construction), and ns be the number of agents active at s (assuming the
policies generated by W̃ ). Then our test statistic, to be denoted by T , is an
L2(PR(W̃ )) norm in the bias terms defined in equation (13). More formally

T (·) ≡
∥∥∥∥n−1

s

ns∑
i=1

∑
ηi

h(ηi, Ji)∑
ηi

h(ηi, Ji)
ˆBias(AW (ηi, m

∗(Ji)|Ji))
2

∥∥∥∥
L2(PR(W̃ ))

.

Assuming the computer’s calculations are exact, T will tend to zero as the
number of simulation draws used in the test grows large if and only if W̃
satisfies condition C3. More generally T is a consistent estimate of the
average percentage difference between the two sides of that fixed point in
C3. We assume we are “at an equilibrium” when it is sufficiently small17.

17Note that a consistent estimate of the variance of this statistic can be obtained by
running this procedure many times and calculating the variance in our statistic over these
runs. To use this to produce a traditional one-sided statistical test we would need to; (i)
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3.3 Properties of the Algorithm.

Recall that our equilibrium conditions do not require us to form beliefs about
player’s types. Analgously our algorithm does not require us either to com-
pute such beliefs or test for their consistency with the actual distribution of
types. We are able to do this by basing our equilibrium concept on the con-
sistency of the players’ evaluations of the possible outcomes of their behavior,
and then using a stochastic algorithm to estimate those evaluations.

The advantages of using a stochastic algorithm to compute the recur-
rent class of equilibria in full information games were explored by Pakes and
McGuire (2001).18 They note that, at least formally, the stochastic algorithm
they propose does away with all aspects of the curse of dimensionality in com-
puting equilibria except for the computation of the actual test statistic. On
the other for the games that they analyze the computation of the test statistic
quickly becomes the dominant computational burden. We circumvent this
problem by substituting simulation for explicit integration in the construc-
tion of the test statistic, so there is no necessary curse of dimensionality in
our algorithm.

However as is typical in algorithms designed to compute equilibria for
(nonzero sum) dynamic games, there is no guarantee that our algorithm will
converge to equilibrium values and policies; that is all we can do is test
whether the algorithm outputs equilibrium values, we can never guarantee
convergence to an equilibrium a priori. Moreover there may be more than
one equilibria which is consistent with a given set of primitives, in which case

decide what is an acceptable percentage error (if for no other reason then to allow for
the imprecision of the computer’s calculations) and (ii) decide on the size of the test (the
probability of type I error we are willing to accept). The size issue is complicated by the
fact that by increasing the number of simulation draws we are free to increase the power
of any given alternative to one. I.e. before we proceeded in this way we would want to
formalize tradeoff between size, power, and the number of simulation draws.

18Were we to consider a computational comparison of our stochastic algorithm to an
algorithm designed to implement an asymmetric information equilibrium concept that
required the computation of consistent posteriors, the computational advanatages of the
stochastic algorithm would be even greater. If we were to use constructed posteriors the
expectation required to update continuation values would involve a convolution over the
distributions induced by the competitors’ policies at different possible states. This, in
turn, would require us to either increase the memory for each state substantially, or to
search and retrieve information from different states each time we update for a particular
state. In rather stark contrast, the updating burden of the stochastic algorithm remains
the same; it still only need to update averages.
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the way we initiate the algorithm, i.e. our choice for W 0, and our updating
procedure will implicitly select out the equilibrium computed. High initial
values are likely to encourage experimentation, and lead to an equilbria in
which players have explored many alternatives. On the other hand, pre-
cisely for the same reason, high initial values will tend to result in a longer
computational times and a need for more memory.

There are other aspects of the algorithm that can be varied as well. Our
test insures that the W̃ outputted by the algorithm is consistent with the
distribution of current profits and the discounted evaluations of the next
period’s state. We could have considered a test based on the distribution
of discounted profits over τ periods and the discounted evaluation of states
reached in the τ th period. We chose τ = 1 because it generates the stochastic
analogue of the test traditionally used in iterative procedures to determine
whether we have converged to a fixed point. It may well be that a different
τ provides a more discerning test, and with our testing algorithm it is not
computational burdensome to increase τ .

Finally since our estimates of the W̃ are formed as sample averages, we
expect the estimates from a particular location to be more accurate the more
times we visit that location (the larger h(·)). If one is particularly interested
in policies and values at a given point, for example at a point that is consistent
with the current data on a given industry, one can increase the accuracy of
the relevant estimates by restarting the algorithm repeatedly at that point.

4 Example: Maintenance Decisions

in An Electricity Market.

The restructuring of electricity markets has focused attention on the design of
markets for electricity generation. One issue in this literature is whether the
design would allow generators to make super-normal profits during periods of
high demand. This because of the twin facts that currently electricity is not
storable and has extremely inelastic demand (for a review of the literature
on price hikes and a careful empirical analysis of their sources during the
California price increaes of the summer of 2000, see Borenstein, Bushnell, and
Wolak, 2002). The analysis of the sources of price increases during periods
of high demand typically conditions on whether or not generators are bid
into or withheld from the market, though some of the literature have tried to
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incorporate the possiblity of “forced” (in constrast to “scheduled”) outages
(see Borenstein, et.al, 2002). Scheduled outages are largely for maintenance
and maintenance decisions, as many authors have noted, are endogenous.
This line of reasoning has led to an extensive empirical literature on when
firms do maintenance (see, for e.g. Harvey, Hogan and Scatzki, 2004, and
the literature reviewed their).19

Since the benefits from incuring maintenance costs today depend on the
returns from bidding the generator in the future, and the latter depend on
what the firms’ competitors bid at future dates, a consistent framework for
analyzing maintenance decisions requires dynamics with strategic interaction.
To the best of our knowledge maintenance decisions of electric utilities have
not been analyzed within such a framework to date. Here we provide a simple
model that endogenizes maintenance decisions, and then ask how asymmetric
information effects the results.

Overview of the Model. In our base model the level of costs of a genera-
tor evolve on a discrete space in a non-decreasing random way until a main-
tenance decision is made. In the full information model each firm knows the
current cost state of its own generators as well as those of its competitors.
In the asymmetric information the firm knows the cost position of its own
generators, but not of those of its competitors.

Firms can hold their generators off the market for a single period and do
maintenance. Whether they do or do not do maintenance is public informa-
tion. If they do maintenance the cost level of the generator reverts to a base
state (to be designated as the zero state). If they do not do maintenance
they bid a supply function and compete in the market. If a generator is
operated in the period its costs increase stochastically. There is a regulatory
rule which insures that the firms do maintenance on each of their generators
at least once every six periods.

For simplicity we assume that if a firm submits a bid function for produc-
ing electricity from a given generator, it always submits the same function
(so in the asymmetric information environment the only cost signals sent by
the firm is whether it does maintenance on each of its generators). We do,
however, allow for heterogeneity in both cost and bidding functions across
generators. In particular we allow for one firm which owns only big genera-

19For an empirical investigation of the co-ordination of maintenance decsions, see Patrick
and Wolak, 1997.
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tors, Firm B, and one firm which only owns small generators, Firm S. Doing
maintenance on a large generator and then starting it up is more costly than
doing maintenance on a small generator and starting it up, but once oper-
ating the large generator operates at a lower marginal cost. The demand
function facing the industry distinguishes between the five days of the work
week and the two day weekend, with demand higher in the work week.

In the full information case the firm’s strategy are a function of; the cost
positions of its own generators, those of its competitors, and the day of the
week. In the asymmetric information case the firm does not know the cost
position of its competitor’s generators, though it does realize that its com-
petitors’ strategy will depend on those costs. As a result any variable which
helps predict the costs of a competitors’ generators will be informationally
relevant.

In the asymmetric information model Firm B’s perceptions of the cost
states of Firm S’s generators will depend on the last time each of Firm S’s
generators did maintenance. So the time of the last maintenance decision
on each of Firm S’s generators are informationally relevant for Firm B. Firm
S’s last maintenance decisions depended on what it thought Firm B’s cost
states were at the time those maintenance decisions were made. Consequently
Firm B’s last maintenance decisions will generally be informationally relevant
for itself. As noted in the theory section, without further restrictions this
recurrence relationship between one firm’s actions at a point in time and
the prior actions of the firm’s competitors at that time can make the entire
past history of maintenance decisions of both firms informationally relevant.
Below we consider three separate restrictions each of which have the effect of
truncating the relevant past history in a different, and we think reasonable
way. We compute an AME for each one of them, and then compare all
results.

4.1 Details and Parameterization of The Model.

Firm B has three generators at its disposal. Each of them can produce 25
megawatts of electricity at a constant marginal cost which depends on their
cost state (ω). Firm S has four generators at its disposal each of which can
produce 15 megawatts of electricity at a constant cost which depends on
their cost state. Firm B’s generator’s marginal cost is smaller than those of
Firm S at any cost state, but the cost of maintaining and restarting firm B’s
generators is two and a half times that of maintaining and restarting Firm
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Table 1: Primitives Which Differ Among Firms.

Parameter Firm B Firm S
Number of Generators 3 4
Range of ω 0-4 0-4
Generator Capacity 25 15
Marginal Cost (ω = (0, 1, 2, 3))∗ (20,60,80,100) (50,100,150,200)
Costs of Maintenance 15,000 6,000

∗ At ω = 4 the generator must shut down.

S’s generators (see table 1).
The firms bid just prior to the production period and they know the

cost of their own generators before they bid. If a generator is bid it bids a
supply curve which is horizontal at the highest marginal cost at which it can
operate (a hundred dollars per megawatt hour for the big generators and two
hundred dollars for the small) until its maximum capacity; the curve then
turns vertical. The market maker runs a uniform price auction. The bids are
horizontally summed and the resultant supply curve is intersected with the
demand curve to determine the price per megawatt hour. This price is paid
for each megawatt hour accepted by the market maker.

The demand curve is log-linear

log(Q) = Dd − αlog(P ),

with a price elasticity of α = .3 and a level which is about a third higher on
weekdays than weekends (i.e. Dd=weekday = 8.5, Dd=weekend = 6.5).

If the generators bid is accepted, the generator is operated and the state
of the generator stochastically decays. Formally if ωi,j,t ∈ Ω = {0, 1, . . . , 4}
is the cost state of firm i’s jth generator in period t, then

ωi,j,t+1 = ωj,i,,t − ηi,j,t,

where, if the generator is operated in the period

ηi,j,t =


0 with probability .1
1 with probability .4
2 with probability .5.
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If, on the other hand, the generator is not operated in this period it does
maintenance and at the begining of the next period is ready to be operated
at the low cost base state (ω = 0).

The information at the firm’s disposal when it makes its maintenance de-
cision, say Ji,t, always includes the vector of states of its own generators, say
ωi,t = {ωi,j,t; j = 1 . . . ni} ∈ Ωni , and the day of the week (denoted by d ∈ D).
In the full information it also includes the cost states of its competitors’ gen-
erators and the strategies are functions of these variables. In the asymmetric
information case firms’ do not know their competitors’ cost states and so
keep in memory public information sources which may help them predict
their competitors’ actions. The specification for the public information used
in this excercise differs for the different asymmetric information models we
run, so we come back to it when we introduce those models.

The strategy of firm i is a choice of

mi = [m1,i, . . . mni,i] : J → Πj

(
0, mi

)
≡ Mi,

where mi is the bid function. As noted this always consists of two numbers;
the highest marginal cost at which it operates its generators, and its capacity.
We assume that whenever the firm withholds a generator from the market
they do maintenance on that generator, and that maintenance must be done
at least once every six periods.20 The cost of that maintenance is denoted
bu cmi.

The profit function is given by πi : MS × MB × Ωni × D → R+ and is
defined as

πi

(
mB,t, mS,t, dt, ωi,t

)
= p(mB,t, mS,t, dt)

∑
j

yi,j,t(mB,t, mS,t, dt)

−
∑

j

[
I{mi,j,t > 0}c(ωi,j,t, yi,j,t(mB,t, mS,t, dt))− I{mi,j,t = 0}cmj,i

]
,

where p(m1,t, m2,t, dt) is the market clearing price, yi,j,t(mB,t, mS,t, dt) is the
output alocated by the market maker to the jth generator of firm i, I{·} is the
indicator function which is one if the condition inside the brackets is satisfied
and zero elsewhere, and c(ωi,j,t, yi,j,t(·)) is the cost of producting output yi,j,t

at a generator whose cost state is given by ωi,j,t.

20In none of our runs was this constraint binding more than in .29% of the cases, and
in most cases it never bound at all.
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Note. We now go on to describe the different sources of public information
that we allow the firm to condition its expectations, and hence its strategies,
on in the three asymmetric information models whose equilibria we compute.
We want to point out, however, that all three are quite simple special cases
of our general model. In particular none of them allow for

• either a continuous control or entry and exit, or for

• ω−i to enter the profits of firm i.

These simplifications make the example particularly easy to compute and
its results easy to interpret since they imply that: (i) the only additional
information accumulated over a period on the likely actions of the firm’s
competitors is m−i, and (ii) the only response to that information that we
have to focus on is mi. We want to point out, however, that they simplifi-
cations are neither necessary given our setup, nor are they likely to generate
an adequate approximation to any real electricity market. They were chosen
to make it easier for us to isolate the impact of asymmetric information on
equilbrium behavior.

4.2 Alternative Informational Assumptions for the As-
symetric Information Model.

As noted the public information that is informationally relevant in the sense
that it helps predict the maintenance decisions of the firm’s competitor could,
in principal, include all past maintenance decisions of all generators; those
owned by the firm as well as those owned by the firms’ competitors. In order
to apply our framework we have to insure that the state space is finite. We
present results from three different “natural” assumptions each of which have
the effect of insuring finiteness and compare their computational properties.

All three asymmetric information (henceforth, AI) models that we com-
pute are based on exactly the same primitives and assume (ωi,t, dt) ∈ Ji,t.
The only factor that differentiates the three is the public information kept
in memory to help the firm assess the likely outcomes of its actions. Two of
the alternatives assume bounded recall; in one a firm partitions the history
it does remember more finely than in the other. The third case is a case of
periodic full revelation of information. This case assumes there is a regula-
tor who inspects all generators during every fifth period and announces the
states of all generators just before the sixth period.
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The public information kept in memory in the three asymmetric informa-
tion models is as follows.

1. In finite history ′′τ ′′ the public information is the time since the last
maintenance decision of each generator (recall that since all generators
must do maintenance at least once every six periods, so τ ≤ 5).

2. In finite history ′′m′′ the public information is the maintenance decisions
made in each of the last five periods on each generator.

3. In the model with periodic full revelation of information the public
information is the state of all generators at the last date information
was revealed, and the maintenance decisions of all generators since that
date (reall that full revelation occurs every sixth period, so no more
than five periods of maintenance decisions are ever kept in memory).

The information kept in memory in each period in the first model is a
function of that in the second; so a comparison of the results from these
two models provides an indication on whether the extra information kept in
memory in the second model has any impact on behavior. The third model,
the model with full revelation every six periods, is the only model whose
equilibrium is insured to be an equilibrium to the game where agents can
condition their actions on the indefinite past. I.e. there may be unexploited
profit opportunties when employing the equilibrium strategies of the first two
models. On the other hand the cardinality of the state space in the model
with full revelation of information is an order of magnitude larger than in
either of the other two models.21

4.3 Reference Models: The Social Planner and Monopoly
Solutons.

To evaluate the performance of the AI and full information (to be labelled
FI) models we compare their results to those that we would obtain from the
same primitives were maintenance decisions made by:

21This does not imply that at every instant the memory requirements of one are greater
than the other, or that the recurrent class of one is larger than the other. So the fact that
the model with full revelation has a much larger state space does not imply that it has
larger memory requirements. The size of memory implications and computational burden
of the different assumptions have to be analyzed numerically.
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• A social planner with full information who maximizes the sum of the
discounted value of consumer surplus and net cash flows to the firms.

• A monopolist with full information which choses maintenance to max-
imize the sum of net cash flows to the two firms.

The social planner provides us with the efficient allocation of maintenance
times. The monopolist provides us with the allocation of maintenance times
that maximize the sum of the firms’ discounted returns. The monopoly
and social planner problems are single agent problems with (generically)
unique optimal policies. They were computed using a standard contraction
mapping22.

4.4 Computational Details and Results.

The AME equilibrium for each of our four duopolies was computed using the
algorithm provided in section 3. This section describes the model-specific
details needed for the computation and provides computational properties of
the results. The details include; (i) starting values for the W (·|·)’s and the
πE(·|·), (ii) information storage procedures, and (iii) the testing procedure.
The computational properties include; (i) test results (ii) compute times, and
(iii) sizes of the recurrent class.

To insure experimentation with alternative strategies we used starting
values which were likely to be much higher than their true equilibrium values.
In particular our intitial values for expected profits are the actual profits the
agent would receive were its competitor not bidding at all, or

πE,k=0
i (mi, Ji) = πi(mi, m−i = 0, d, ωi).

For the intial condition for the expected discounted values of outcomes (ηi)
for different strategies we assumed that the profits were the other competitor
not producing at all could be obtained forever with zero maintenance costs,
that is

W k=0(ηi, mi|Ji) =
πi(mi, m−i = 0, d, ωi + ηi(mi))

1− β
.

22The equilibrium concept for the full information duopoly is a special case of that
for the game that allows for asymmetric information (it corresponds to the equilibrium
concept used in Pakes and McGuire, 2001). It was computed using the same techniques
as those used for the AI duopoly (see section 3 and the details we now turn to).
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The memory was structured first by public information, and then for each
given public information node, by the private information of each agent. We
used a tree structure to order the public information and a hash table to
allocate the private information conditional on the public information. To
keep the memory manageable, every fifty million iterations we performed a
“clean up” operation which dropped all those point which were not visited
at all in the last ten million iterations.

The algorithm was set up to perform the test every one hundred million
iterations. Recall that the test statistic is an L2(P ) norm in the percentage
deviation between the simulated and estimated values normalized by the
variance in simulated value (where P is determined by the frequency of points
visited); roughly an R2 for the fit of the simulated to the estimated values.
Had we used the test to determine the stopping iteration and stopped the
algorithm whenever the R2 from our test was above .995, we would have
always stopped the test at either 100 or 200 million iterations.

Since we wanted more detail on how the test statistic behaved at a higher
number of iterations we ran each of our runs for one billion iterations. There
was no perceptible change in the test statistic after the 300 millionth iter-
ation. To illustrate how the test behaved we computed one run of the full
revelation model that stopped to do the test every ten million iterations.
Figure 1 graphs the results from those tests. As can be seen from that fig-
ure the R2 increased rapidly until about 100 million iterations. It increases
fruther but at a less rapid rate between 100 and 130 iterations, and remains
essentially unchanged after 150 million iterations (at a value of about .9975;
see figure 1). We could have decrased the number of iterations significantly
were we willling to use starting values that were not as high.

The time per one hundred million iterations, each of which includes the
test time, is reported in table 2.23 The differences in compute times across
models roughly reflect the differences in the size of the recurrent class from
the different specifications, as this determines the search time required to
bring up and store information.

There are some notable differences in the sizes of the recurrent class across
models. First the recurrent class in the finite history τ model is less than half
the size of those in the other AI models. Second, though the cardinality of

23All computations were done using a Linux Red-Hat version 3.4.6-2 operating system.
The machine we used had seven AMD Opteron(tm) processors 870; CPU: 1804.35 MHz,
and 32 GB RAM.
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Table 2: Computational Comparisons.

AI; Finite AI; Finite AI; Full Full
Hist. τ Hist. m Revel. Info.

Compute Times per 100 Million Iterations (Includes Test).
Hours 1.05 2.37 2.42 2.44

Cardinality of Recurrent Class.

Firm B (×10−6) .349 .808 .990 .963
Firm S (×10−6) .447 .927 1.01 1.09

the state space for the AI model with periodic full revelation of information
is an order of magnitude larger than in any of the other models, there is
very little difference between the size of its recurrent class and either the
recurrent class of the finite history m AI model or the FI model. Note that
this implies that if we limit our attention to the recurrent classes of models,
both the computational burden and the memory requirements from the AME
AI model are similar to those from the FI model.

After computing policies we ran a one million iteration simulation using
the computed policies for each of our models. We now turn to the numerical
results from these runs. Table 3 provides a comparison of the results from
from the three AI models. It is suprising how little difference there is in
these statistics across the three models. This may well be a result of the
particular parameterization that underlies our computation and in the way
we implement our bounded memory assumptions. Whatever the reason, the
remainder of the paper focuses on the results for the AI model in which there
is periodic full revelation of information.

4.5 Numerical Results.

The output of the algorithm includes a recurrent class of states as well as
strategies, costs (both operational and maintenance), and profits at those
states. Here we focus on the maintenance decisions and their implications on
consumer welfare and profits. For this we use the output of the simulation
runs we initiated after computing the equilibrium. We begin with the social
planner and monopoly problems as they provide clear reference points.
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Table 3: Three Asymmetric Information Models.

Finite History of Periodic
τ m Revelation

Summary Statistics.
Consumer Surplus 2.05 e+07 2.05 e+07 2.05 e+07
Profit B 2.46 e+06 2.46 e+06 2.45 e+06
Profit S 2.32 e+06 2.32 e+06 2.33 e+06
Maintenance Cost B 2.28 e+05 2.28 e+05 2.28 e+05
Maintenance Cost S 1.66 e+05 1.66 e+05 1.65 e+05
Production Cost B 2.40 e+06 2.40 e+06 2.39 e+06
Production Cost S 2.82 e+06 2.83 e+06 2.83 e+06

The Social Planner Problem. The solution to the social planner prob-
lem provides a basis for understanding the logic underlying efficient mainte-
nance decisions for our parameterization. Recall that there is significantly
less demand on weekends than on weekdays. Table 4 presentsaverage shut-
down probabilities by day of week. The social planner shuts down at least
one large and one small generator about 97% of the Sundays, and shuts down
two of each type of generator over 60% of all Sunday’s. As a result Monday
is the day with the maximum average number of both small and large gen-
erators operating. The number of generators operating falls on Tuesday, and
then falls again both on Wednesday and on Thursday, as the cost state of the
generators maintained on Sunday stochastically decay and maintenance be-
comes more desirable. By Friday the planner tends to favor delaying further
maintenance until the weekend, so the number of generators operating rises.
Maintenance goes up slightly on Saturday, but there is an obvious planner
preference for doing weekend maintenance on Sunday, as that enables the
generators to be as prepared as possible for the Monday work week. As Ta-
ble 5 shows these maintenance decisions imply that almost no maintenance
occurs at low cost states (ω = 0 or ω = 1).

The Monopoly Problem. The solution to the monopoly problem pro-
vides a basis for understanding the logic of profit maximizing behavior when
the two firms can fully co-ordinate their behavior. Profit maximization gen-
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Table 4: Average No. of Operating Generators.

Weekend Weekdays
Sat. Sun. Mon. Tues. Wed. Thurs. Fri.

Social Planner
Firm B: 2.38 1.24 2.85 2.44 2.08 2.06 2.43
Firm S: 2.79 2.08 3.11 3.08 2.96 2.96 3.12

Duopoly AI
Firm B: 2.17 2.16 2.29 2.32 2.24 2.22 2.27
Firm S: 3.32 2.91 2.16 2.41 2.57 2.50 2.50

Duopoly FI
Firm B: 2.02 1.81 1.80 1.84 1.87 1.81 1.84
Firm S: 2.62 2.43 2.35 2.42 2.41 2.40 2.42

Monopolist
Firm B: 3 2.62 0.97 1 1 1 1
Firm S: 3.90 3.39 0.03 0 0 0 0

erates a very different outcome than does the surplus maximization of the
planner. On virtually every weekday the monopolist shuts down two of the
three large generators and all of the small generators. In contrast, on week-
ends it tends to operate all three of its large generators, and at least three
of the four small generators. That is the monopolist has an incentive to
hold back on supply when demand is high, and supply large amounts when
prices are low. Moreover this generates a shut down pattern that seems so-
cially inefficient; 43% of the shutdowns of large generators and over 80% of
the shutdowns of small generators occur at the most favorable cost state of
ω = 0. Indeed the cost state of the monopolist’s operating generators is, on
average, half or less that of the social planner’s operating generrators.

The Duopoly with FI. When there is full information the aveage number
of generators operating is close to constant over the whole week (weekday or
weekend; though on Saturday utilization rates do increase a small amount
for both firms). Indeed the full information AME solution leaves the two
firms with one of two combinations of operating generators over 70% of the
time on each weekday; about 45% of the time there are two of each type
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Table 5: Distribution of ω Prior to Shutdown.

Dist. ω Prior to Shutdown. Maint∗

ω = 0 ω = 1 ω = 2 ω = 3 ω = 4 Freq.

Social Planner
Firm B: 0.00 0.002 0.070 0.152 0.778 2.81
Firm S: 0.00 0.012 0.150 0.250 0.588 2.60

Duopoly AI
Firm B: 0.021 0.010 0.020 0.026 0.924 2.94
Firm S: 0.201 0.076 0.150 0.122 0.452 1.97

Duopoly FI
Firm B: 0.182 0.158 0.267 0.080 0.313 1.62
Firm S: 0.270 0.120 0.181 0.102 0.327 1.55

Monopolist
Firm B: 0.432 0.135 0.216 0.056 0.162 .97
Firm S: 0.811 0.026 0.061 0.064 0.040 .36

∗ Average number of days between maintenance decisions.

of generator operating, and about 26% of the time three of each type of
generator is operating.

This leads to less shutdown occuring at low costs states than we found
for the monopolist. However still well over a third of the shutdown decisions
for each type of generator occur when the generator is at one of the two
lowest costs states (the planner has almost no shutdowns at those states).
Moreover the full information duopoly firms do maintenance about 70% more
than does the social planner, and supply a bit more electricity on weekends
then on weekdays. We come back to the welfare implications of this behavior
below.

The Duopoly with Asymmetric Information. Perhaps the most strik-
ing result is in Table 5 is the finding that the frequency of maintenance in
the equilibrium of the AI duopoly is similar to that frequency in the social
planner solution. The firm with the big generators in the AI duopoly does
a little less maintenance than a social planner would, and the firm with the
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small generators does a little more (see table 5). This contrasts sharply with
the behavior of the firms in the equilibrium of the FI duopoly.

Relatedly the distributions of ω prior to shutdown are almost stochasti-
cally orderred (in the first order dominance sense) across institutional regimes
(see table 5). The distribution of maintenance emanating from the AI duopoly
is pretty close to being larger than that of the planner, which is larger than
that generated by the FI duopoly, which in turn is larger than the monopoly
generates. So to the extent there is an inefficiency in the maintenance de-
cisions of the asymmetric information equilibrium it does not seem to be a
result of firms withdrawing too much capacity; if anything the firm with the
large generators in the duopoly with asymmetric information does not do
enough maintenance.

This is strikingly different from the maintenance decisions in the FI AME
equilibrium, wherein there is clearly too much maintenance by both firms.
There are two possible reasons for this difference; part of the difference in
maintenance behavior could be a result of the differences in AME recurrent
class generated by the two equilibria, and part could be a result of differences
in strategies for a given set of states. To get some indication of the relevance
of these two possiblities we took the invariant distribution of states in the
two AME equilibria and considered the bids that would be generated by the
static Nash full information equilibrium in those states. When using the
static Nash full information policies the number of generators operated did
not differ across the states generated by the two equilibria.24 Apparently the
uncertainty generated by asymmetric information induces firms to do less
maintenance.

We come back to the consumer welfare implications of this presently. To
see why the firms bid more generators (do less maintenance) in the AI than
in the FI equilibrium, consider the incremental profits on the next machine
firm j could have bid in the FI equilibrium. That is consider

∆π(mo
j + 1, mo

−j, dj, ωj) ≡ πj(m
o
j + 1, mo

−j, dj, ωj)− πj(m
o
j , m

o
−j, dj, ωj),

where mo
j is the number of machines bid. Now consider the incremental

profits of player j at the same (mo
j , ωj) in the AI model. In the AI model

24The average number of small generators operating in a day was 2.85 from both sets of
states and for the large generator was 2.22 for the distribution of states from FI dynamic
duopoly versus 2.27 for the distribution of states from the AI dynamic duopoly. When
there were multiple equilbria to the static game these numbers were computed by averaging
over those equilibria.
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mo
−j is unknown, so the decision of firm j is based on an expectation over its

likely values. The variance introduced by the asymmetric information will
increase the profitability of the mo

j + 1 generator if ∆π(·, m−j, ·) is convex in
m−j. That is the effect of increased variance on the quantity bid in a static
Nash equilibria will depend on the convexity of the first order condition in
the quantities bid by a firm’s competitors.

In a dynamic game maintenance decsions are based on the value function
(not on the profit function). So whether or not the introduction of asym-
metric information increases the incentives to bid generators depends on the
convexity of the value function in the number of generators bid by the firm’s
competitors. However the value function is a complex iterate of the profit
function and we might expect it to inherit the properties of that function.
To check whether this was so in our case we calculated the increment in a
firms’ profit for bidding an additional generator for all points which were in
the recurrent class of both the FI and AI AME equilibria. We then looked to
see whether this increment was the discrete analogue of “convex” in m−i. It
was, and distincly so (at least for the averages we printed out). The extent to
which this result generalizes to other specificaitons is of more general interest
to the analysis of Nash equilibria with asymmetric information.

Though the extent of shutdown in the AI AME equilibria is similar to the
extent to which the social planner shuts down generators, as table 2 shows,
when there is asymmetric information shutdowns occur more on weekends
than on weekdays, just the opposite of the social planner. That is the duopoly
with asymmetric informations’ distribution of maintenance decisions over
days of the week is not efficient. Moreover the equilibrium with asymmetric
information sometimes incentivizes the firm with the small generators to shut
down the “wrong” generators; i.e. to shut down generators with lower cost
states than generators that it operates (something which never occurs in any
of the other regimes, and almost never occurs to the firm with the large
generators in the duopoly with AI).

We considered all those cases where the firms shut down 1 or 2 generators
and computed the fraction of those times that it shut down the generators
with the highest cost state (the highest value of ω). In the duopoly with AI,
when the firm with the small generators shut down one generator it did not
shut down the highest cost generator 30% of the time, and when two gener-
ators were shut down it did not shut down the two highest cost generators
over 35% of the time. Since, if the competitor did not change its bid, the
firm would always do better by shutting down the highest cost generator, this
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can only occur because by shutting down a higher cost generator the firm
induces its competitor to change its bids in the coming period in a way that
favors the firm which is shutting down the low cost generator; i.e. because of
the signalling value of the maintenance decision. Interestingly when the firm
did not shut down the generator with the highest cost the low cost generator
that was shut down had been operating less time since its last maintenance
decision then the high cost generator that was not. So by shutting down
the low cost generator the firm insures that the generators that it will op-
erate next period will have operated a longer period of time since their last
maintenance decision.

Table 6: Welfare Under Alternative Institutions.

Duopoly AI Duopoly FI Planner Monopolist

Cons. Surplus (CS) (×10−6) 20.51 19.70 22.21 2.05

Profits.
Firm B (×10−6) 2.45 2.11 1.99 11.52
Firm S (×10−6) 2.33 2.83 2.13 -.250
Firms B + S (×10−6) 4.78 4.95 4.12 11.27

Total Surplus (CS + B + S) 25.29 24.65 26.34 13.32

Prices.
Weekend 145.77 170.42 152.51 216.44
Weekday 1205.76 1292.83 990.46 3880.02

Fraction of Output Produce by Firm with Larger Generators.
Weekend .47 .48 .46 .60
Weekday .50 .43 .46 .99

Consumer Surplus and Profits. As one might expect there is a rather
large difference in both consumer suplus and profits between the monopolist
and the social planner (see Table 6). The fact that the monopolist holds
back generators so much of the time implies that consumer surplus is about
10.8 times higher under the social planner’s allocation (22.21 vs 2.05). Some
of this difference gets made up in profits; the discounted profits under the
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monopoly allocation are about two and half times those under the social
planner’s allocation. However the difference in profits does not come close to
compensating for the consumer surplus loss; total surplus is about twice as
large under the social planner’s allocation (26.34 vs 13.32).

This large a difference in total surpls between the monopoly and social
planner’s allocations implies that these primitives leave a lot of room for
differences in the performance of different institutional structures. However
both our duopoly equilibria, that with asymmetric and that with full infor-
mation, generate a total surplus which is much closer to that from the social
planner problem. The full information AME equilibrium generates a total
suplus just 6.5% less than that of the social planner, while the asymmetric
information AME equilibrium does even better; generating a surplus which is
only 4% less than the social planner does. As one might expect from our dis-
cussion of maintenance decisions consumer surplus is larger under AI AME
equilibria than under the FI AME equilibria, but the reverse is true for firm
profits.

Note that even in the solution to the social planner problem we see rather
dramatic price effects of the differential demand between weekdays and week-
ends. Both the FI and the AI AME equilibria magnify this difference, but not
to anywhere near the extent of the monopoly equilibria. Note also that it is
the firm with the small generators’ who gains the most from moving to full in-
formation. This is because when there is full information the firm with small
generators produces a higher fraction of the output on the highly lucrative
weekdays (58% vs 50%), and has costs which fall more than proportionately
to its decrease in production (because without asymmetric information it
always produces with its most efficient generators). That is by moving to
full information the firm with relatively low maintenance costs but high pro-
duction costs is able captures more of the surplus available on high demand
days.

5 Concluding Remark

We have presented a simple framework for analyzing finite state dynamic
games with asymmetric information. It consists of a set of equilbrium condi-
tions which, at least in principal, are empirically testable, and an algorithm
capable of computing equilibrium policies from a given set of primitives. The
algorithm is relatively efficient in that it does not require; storage and updat-
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ing of posterior distributions, explicit integration over possible future states
to determine continuation values, or storage and updating of information at
all possible points in the state space. There are many dynamic situations of
interest to Industrial Organization which naturally involve asymmetric in-
formation; examples include collusion, auctions, and regulation. A more in
depth analysis of these situations requires a framework which is relatively
easy to use and can incorporate the empirical detail that insures a realistic
description of the phenomena of interst.
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