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Abstract 

Weitzman’s (1998) seminal work applied the metaphor of Noah’s ark and the related 

libraries model to the problem of species preservation under budget constraints. In 

this paper we consider the symbiotic Noah's Ark problem with two types of species: a 

keystone species and a keystone-dependent species, which relies on the keystone 

species for survival. The central planner maximizes the expected biodiversity value 

under budget constraint and obtains the optimal preservation policy. One of 

Weitzman’s main conclusions was that under an appropriate independence 

assumption, an optimal policy yields an extreme outcome (almost all species either 

fully survive or die out). In contrast, we show that our symbiotic model with two 

types of species generates a unique interior optimal policy. Moreover, we find that 

under an interior optimal preservation policy, the expenditure on the keystone species' 

survival is greater than 50% of the given budget.  
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1. Introduction 

Biodiversity benefits human society by providing ecosystem services. In agriculture, 

biodiversity offers a reservoir of genetic traits from wild varieties, while in medicine, 

natural chemicals can be mined for potentially useful medicinal compounds. This is in 

addition to the aesthetic, cultural, or spiritual rewards that human beings derive from 

the natural world (Daily, 1999). The economic valuation of these ecosystem services 

faces many challenges. The understanding of interdependencies between: the species 

and their ecological functions, and the species and the ecosystems, is far from being 

complete (Kassar and Lasserre, 2004). Moreover, the society faces many unanswered 

questions related to biodiversity maintenance or preservation.  Indeed, how can we 

manage and protect biodiversity? (Loreau, 2010).  

One of the most important analyses of optimal preservation policies was pioneered by 

Weitzman's seminal paper "The Noah's Ark Problem" (1998), which applied the 

metaphor of Noah's ark (borrowed from his earlier work (1993))  and  the related 

libraries model to the problem of species preservation under budget constraints. 

Weitzman shows how biodiversity theory can be used to determine optimal 

preservation policies, based on genetic distances between species. Specifically, 

Weitzman maximized the expected biodiversity under budget constraints, assuming 

the independence of the survival probabilities of different species. He also derived   a 

general criterion to identify species that will enter Noah's ark, i.e. which species will 

survive.  

Other papers extended the Weitzman framework. Mainwaring (2001) noted that 

Weitzman's model is unsuitable for studying global problems of biodiversity loss, and 

Weikard (2002) pointed out that applying Weitzman's model to genetic diversity is 

difficult. Heide et al. (2005) wrote that “…Weitzman’s general criterion only holds 

under a very strict condition: namely, in the absence of ecological relationships 

among species... This represents at best a very specific case, and can certainly not be 

regarded as providing general information about which species to protect through 

which protection projects…Weitzman’s criterion is only suitable if ecological 

relationships are of little importance, notably if the loss of a species has little impact 

on an ecosystem”. (See also Montgomery et al. (1999), Haight (1995), and Marshall 

et al. (2000).)  
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In our paper we introduce a symbiotic model of biodiversity in order to relax the 

Weitzman's independence condition. We consider a symbiotic model with two types 

of species: a keystone species and a keystone-dependent species, which relies on the 

keystone species for survival, and identify the preservation methods that maximize the 

expected biodiversity value under budget constraints. Since the budget is usually not 

sufficient for full preservation, we can assume that only part of the preservation 

methods can be implemented under this given budget. Those methods, which 

maximize the expected biodiversity value, are called optimal preservation policies. 

Our ecological value function extends Weitzman's diversity index which was the 

number of different genes available to a set of species. We assume that the marginal 

contribution in ecological value terms of the keystone-dependent species is positive. 

We apply the Weitzman framework of the uncertain environment for the two types 

symbiotic model and consider the maximization problem of the expected biodiversity 

value under budget constraints to our symbiotic model.  

The main result of our keystone species and keystone-dependent model is that there 

exists a unique optimal policy and this unique optimal policy is interior policy. 

Moreover, the optimal expenditure on the keystone species is greater than 50% of the 

given budget. These results may be applied to a policy recommended by us to a 

Nature and Parks Authority.  

The paper is organized as follows: Section 2 describes a case study of the pines and 

pine mushrooms as a symbiotic model with positive marginal contributions in 

ecological value terms. In Section 3 we introduce the mathematical symbiotic model 

.In Section 4 we present the central planner problem. The results for the symbiotic 

model are given in Section 5. Section 6 compares the symbiotic model with 

Weitzman's model – algebraically and graphically – under linear costs. In Section 7 

we present some possible extensions  

 

2. The Symbiotic Case Study: the Pine and Pine Mushroom in National Parks 

There is an interesting example of the symbiotic model of species preservation which 

clarifies the idea of the symbiotic model. The pine (Pinus) and pine mushroom found 

in National Parks (related species are found in forests throughout the world) are an 

example for a symbiotic relationship between species. The pine mushrooms in the 
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natural park do not appear without the pines.  While the main danger for pines is fires, 

the risks for the pine mushrooms come from fruit picking. The pines benefit humans 

by providing products for building and medicinal use as well as through their 

contribution to the landscape, while the mushrooms can be utilized both as edible 

fungi and for medical purposes. The relationship between these two types of species is 

defined as a symbiotic relationship – specifically, commensalism. The tree and fungus 

live in a mutually beneficial relationship in which mushrooms draw carbohydrates 

from the host tree’s roots, and, in return, help the plant to absorb water and mineral 

nutrients. Because the mushrooms colonize the roots of the pine trees, they cannot 

survive without them. In addition, the pine mushroom’s marginal contribution in 

ecological value terms is positive.  

 

3. The Mathematical Symbiotic Model 

We begin by denoting the keystone species by P and keystone-dependent species by 

M (P and M stand for the Pine species and the Pine Mushroom species respectively.) 

 The uncertainty (following Weitzman's approach) is based on survival probabilities' 

analysis. These probabilities are computed in Weitzman's independent probabilities 

model by the formula: 

    
 


Si Si

ii PPSob 1Pr , where iP  is the survival probability of species i.  

The probabilities in the symbiotic model that we are interested in are: 

 S1)     .0Pr Mob  Note that {M} stands for the case where the pine mushroom 

survives and the pine dies out. Thus, the probability of this event {M} is zero.  

The other formulae ((S2)-(S3)) follow from the multiplication rule, where we use the 

conditional probability denoted by C

MP  (of the survival of the pine mushroom 

conditioned on the survival of the pine); where PP  is the pine survival probability. 

S2)    C

MP PPMPob ,Pr       

S3)     ).1(Pr C

MP PPPob   
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The expected biodiversity is defined to be the expectation of the biodiversity value 

function V(.) computed in our uncertainty environment. Thus, we have in the 

symbiotic case: 

          MPobMPVPobPVW S ,Pr,Pr)(     (1) 

Where, V(S) stands for the ecological value of a set S of species.  

Inserting (S1)-(S3) in formula (1) and denoting })({}),({ PVMPVEM  . ME is the 

positive marginal contribution in the biodiversity value of the keystone-dependent 

species M to the keystone species P, denote   PVM P  .  Then:  

M

C

MPPP

S EPPMPW        (2) 

This can be compared to the Weitzman formula (equation 5, p. 1283) : 

MPMMPP

W PJPMPMPW       (3) 

Where   PVM P  ,   MVM M   and J are positive constants
5
.  

The cost function  C

MP PPC ,  in the symbiotic model embodies the idea that the central 

planner can increase the survival probabilities of both species by investing capital and 

using technology, so the probabilities are given by (S1-S3). Moreover, we assume that 

the cost function is separable      C

MP

C

MP PCPCPPC ,00,,   so in the case of pine 

and pine mushroom this is carried out through programs to prevent (pine) forest fires 

and enforcement of prohibitions on mushroom harvesting. 

4. The Central Planner's Problem in the Symbiotic Model 

In order to identify the significance of the symbiotic model and its comparison to 

Weitzman's model, we assume, for simplicity, that (0,0) and (1,1) represent the lower 

and the upper bounds of the survival probabilities (and conditional probabilities) of 

both species. (I.e. the null and the full preservation policies.)  

The central planner problem in the symbiotic model is to maximize the expected 

symbiotic biodiversity under budget constraints. We assume that the costs  C  in our 

symbiotic model are bounded and are given by a continuous and strongly increasing 

function  C

MP

S PPC , .We assume that the budget is not sufficient enough for full 

                                                           
5
 In Weitzman's diversity index the constant         MPVMVPVJ ,  is positive. 
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preservation policy, i.e. C(1,1)>B, and in the null preservation policy, the costs 

vanish, i.e.   00,0 C .   

We get:  

MAX M

C

MPPP EPPMP   

s.t.    BPPC C

MP

S ,  

     1,1,0,0  C

MP PP  

5. The Results 

5.1 Existence of Optimal Policies and Budget Equality 

In the central planner's problem optimal policies exist and every optimal policy 

satisfies the budget equality. 

Proof: See appendix 1. 

 5.2 Uniqueness of the Optimal Policy in the Two Types' Symbiotic Model  

Theorem A: Assume a continuous convex costs function  C

MP

S PPC , and positive 

budget B>0, then the optimal policy in the two types' symbiotic model, 

 *** , C

MP PPP  , is unique. 

Proof: See appendix 2. 

5.3 Interiority Property and Optimal Expenditure in the Symbiotic Model 

In this section we consider three different cases of cost functions  C

MP

S PPC ,  and 

present the related results. The first case is when the costs are linear. The second case 

is the infinite marginal cost case. The third case is when we have a common value 

cost function.  

Case I: The Linear Costs Case in the Symbiotic Model  

Theorem B.1: Assume that the symbiotic cost function is linear. That is, 

  C

MMPP

C

MP

S PCPCPPC , , where by assumption   01,1  BCCC MP . Assume 
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further that the unique optimal policy  **, C

MP PP  is interior. Then the optimal 

expenditure on the keystone species preservation is greater than 50% of the budget.  

Proof: we have: 

Max      M

C

MPPP EPPMP   

s.t.        BPCPC C

MMPP   

      1,1,0,0  C

MP PP          

 By our assumption (of interiority) the F.O.C. yields  
M

P

MP

M

C

MP

C

C

EP

EPM



*

*

 . By 

MP

M

C

MP

P

C

M

EP

EPM

P

P
*

*

*

*


   it follows that **

PP

C

MM PCPC  . Thus, budget equality 

yeilds  
2

0, ** B
PCPC PPP  . Q.E.D. 

Case II: The Infinite Marginal Cost in the Symbiotic Model  

Assume the following assumptions: 

1. The cost function is separable, i.e.      C

MP

C

MP PCPCPPC ,00,,  , strictly 

increasing in  C

MP PP ,  and convex.  

2. The marginal cost of PP  at  1 is infinity,   0,1
PPMC  

3.  The marginal cost of C

MP  at  1 is infinity,   1,0C
MP

MC  

Remark: Assumptions (2) and (3) are natural intuitive assumptions. Specifically, they 

imply that at full preservation of a species, the marginal cost is infinite. Note that in 

the Mt. Carmel National Park, obtaining full preservation of the pine (i.e. with no fire 

risk at all) can be done by investing huge, but finite, amounts of money, however the 

marginal cost of pine's preservation increases asymptotically to infinity.    

 Theorem B.2: Under the above assumptions the unique optimal policy is an interior 

optimal policy. 
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Proof:  

I. Let  *** , C

MP PPP   be the unique optimal policy.  

1. Assume first that  1,1* P . By budget equality     BCPPCB C

MP  1,1,
** , a 

contradiction.  

2. Assume now 1* PP and 1
*
C

MP . Thus, *P  is a corner optimal preservation policy. 

The First Order Condition is:  
C
M

P

C
M

P

P

P

P

P

MC

MC

MW

MW
  at *P , where C

MP PP MWMW , , 
PPMC and 

C
MP

MC  and denote the partial derivatives of  C

MP

S PPW , and  C

MP

S PPC ,  with respect 

to their arguments.  It follows that: 

 

 





***

*

*
,0

0,1

C

M

P

P

P

MP

M

C

MP

P

P

PC

C

PMC

MC

EP

EPM

PMW

MW

C
M

P

P

C
M

P

C
M

P  (4) 

A contradiction. 

3. Obviously, since B>0 therefore   0, ** C

MP

S PPW , it follows that 0* PP . We have 

proved that 10
*
 PP , i.e. *P is an interior optimal policy in the first argument. 

II. Similarly, we can prove that under assumption (3) that 1
*
C

MP . Q.E.D. 

Case III:  The Common Value Costs in the Symbiotic Model 

We assume now the following conditions: 

There exists a common function F for both species that is   1,0:F  with F(0)=0, 

   1F , 0F and 0F that satisfies      C

MP

C

MP

S PFPFPPC , . 

(An example of such a function is    xKxF  11  .) 

Theorem B.3: Under the above assumptions, the unique optimal policy is an interior 

policy that satisfies  **

P

C

M PP   , and  
2

0,* B
PC P  .  
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That is, the optimal expenditure on the keystone species in the unique interior optimal 

policy  *** , C

MP PPP   is greater than 50% of the given budget.  

Proof: Obviously, by Theorem B.2 we have an interior optimal policy. For interior 

optimal policy we have the F.O.C. 

 
 *

*

*

*

*

*

C

M

P

MP

M

C

MP

P

C

M

PF

PF

EP

EPM

P

P







     (5) 

Assume by negation that **

P

C

M PP  . Then by convexity 0F we have that F   is 

increasing, therefore    ** C

MP PFPF  . Thus, 
 
 

11
*

*

*

*

*

*










C

M

P

MP

M

C

MP

P

C

M

PF

PF

EP

EPM

P

P
. A 

contradiction.   Therefore: **

P

C

M PP   and by 0F and therefore F is strictly 

increasing. Thus    ** C

MP PFPF  , therefore        **** 2, P

C

MP

C

MP PFPFPFPPCB  . 

Which yields that  
2

0,* B
PC P  . Q.E.D. 

6. Comparison with Weitzman 

There is a dichotomous between the symbiotic model and the Weitzman's model.  

Indeed we have that when we have independence, i.e., when M

C

M PP  then we have 

either 1PP  and/or 0MP .  

Proof: See Appendix 3. 

6.1 The Symbiotic Model vs. Weitzman's Model 

The central planner problem in both models is to maximize the expectation of the 

biodiversity value under budget constraints. By inserting SW and WW from equations 

(9) and (10) and combining with the costs functions  C

MP PPC , , which embody the 

idea that the central planner can increase the survival probabilities of both species by 

investing capital and using technology, we obtain the following: 
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The Symbiotic Model    Weitzman's Model 

MPMMPP PJPMPMP   MAX 

 

 
M

C

MPPP EPPMP   MAX 

BPCPC MMPP   s.t.      BPPC C

MP

S ,  s.t. 

     1,1,0,0  MP PP         1,1,0,0  C

MP PP   

 

6.2 Extreme Optimal Policy Theorem in Weitzman's Model with Two Species 

The extreme optimal policy in Weitzman's model yields that one species either fully 

preserved or dies out, while the other species survival probability determined by the 

budget equality. 

 Weitzman proved that any optimal policy, under linear costs and independent 

survival probabilities, is an extreme policy.  

6.3 Algebraic and Graphical Solutions of Weitzman's Model vs. the Symbiotic 

Model under Linear Costs 

6.3.1 An Algebraic and Graphical Example of Weitzman's Model  

Let us define  

  MPMMPPMP

W PJPMPMPPPW ,  

BPCPC MMPP   

 
M

PP

M

PM
C

PC

C

B
PP   

We assume that 0 BCC MP  and we denote Weitzman's expected 

diversity by:  
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    

2

,

PP

M

PP

M

P

M

PP

M

MMP

PMP

W

P

W

PP
C

PC

C

B
JP

C

PC

C

B
MMP

PPPWPH

 




















 

Clearly 0  and 0 . Thus, the function  P

W PH  is a strictly convex function 

over the interval [0,1] and hence the maximum of the strictly convex function 

 P

W PH  is obtained on the boundary (that is, either 0 or 1 or both). 

I. Optimal policy is in the Left Edge 

 

 

 

 

 

 

II. Optimal policy is in the Right Edge 

 

 

 

 

 

 

 

 

 

• 

 P

W PH 

PP 

1 

0 

• 

 P

W PH 

PP 

1 

0 
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III. Two extreme optimal policies – one is in the Left Edge and the other is in the 

Right Edge 

 

 

 

 

 

6.3.2 A Graphical Example of the Symbiotic Model  

Let :  

  M

C

MPPPMP

S EPPMPPPW ,  

BPCPC C

MMPP   

 
M

PP

M

P

C

M
C

PC

C

B
PP   

     2~~
, PP

M

PP

M

MPPPP

C

MP

S

P

S PP
C

PC

C

B
EPMPPPPWPH  








  

Clearly 0~  and thus, in the symbiotic case,  P

S PH  is a strictly concave function 

over the interval [0,1], and vanishing where 0PP . This strict concave function has a 

unique maximum. 

This unique maximum might be interior or at the Right Edge 1 of the interval [0,1] 

I. An interior optimal policy in (0,1) 

 

 

    

 

• 

0 

 P

W PH 

PP 

1 

• 

• 

PP 

 P

S PH 

0 

 

1 
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II. An extreme optimal policy in the Right Edge 

 

  

 

 

 

7. Extensions 

Our symbiotic model in this paper can be useful to different applications.  A possible 

application of our symbiotic model might be a central library with a single branch 

library, where each loan of a book is made via the central library.  Our model implies 

that the optimal expenditure on the central library is greater than 50% of the given 

budget. 

Furthermore, the two-species model can be extended to the case with (K+1) species, 

where one of the species is a keystone species and the other K species are keystone-

dependent species (following Weitzman's uncertainty environments and our symbiotic 

approach). We plan to investigate this (K+1) species' symbiotic model and compare it 

to Weitzman general independent case in a subsequent paper.  

Next, a different extension of our symbiotic model with pine and pine mushroom can 

be treated when one of the species is a predatory keystone-dependent species. Here, 

we can also obtain a unique optimal policy, where the objective of the central planner 

is to minimize the reduction of the expected biodiversity by the predatory species. In 

this model the predatory species' marginal contribution is negative. We found that in 

this case the central planner problem can be transformed into a standard central 

planner problem where we have a symbiotic structure.  

Finally, we conclude that the results of this paper might guide conservation 

organizations or natural parks authorities how to allocate given budget on 

preservation of species. In the Carmel National park in Israel, the Israel Nature and 

Parks Authority (NPA) or the Jewish National Fund (KKL) are responsible for natural 

 

• 

PP 

 P

S PH 

0 1 
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reserves. They have low budget and need to allocate it optimally. Our present paper 

gives them preliminary tools for optimal preservation policies, which are in contrast 

to Weitzman's criteria. 
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Appendix 1 – Existence of Optimal Policies and Budget Equality 

Proof: 

A continuous function over a non-empty, closed and bounded set in 2

  has a 

maximum. Thus, optimal policies exist. 

 Let  *** , C

MP PPP   be an optimal policy and assume by negation that there is not 

budget equality. That is,   BPPC C

MP ** , . Then by   BC 1,1 , we have either 1* PP  

or 1* C

MP . Obviously, by the strict inequality we can obtain higher expected 

biodiversity, while keeping the budget constraint. A contradiction .Q.E.D 

Appendix 2 - Uniqueness of the Optimal Policy in the Noah's Ark Symbiotic 

Model  

Proof: 

Let   *** , C

MP PPP   be an optimal policy. We have  

    ******** YPEPMPEPPMPPW PM

C

MPPM

C

MPPP  , where M

C

MP EPMY
**  . 

Obviously B>0, 0* PP   and   0* PW . 

Assume by negation that  ****** , C

MP PPP   is another different optimal policy; 

therefore, its expected biodiversity value 

satisfies     **************** YPEPMPEPPMPPW PM

C

MPPM

C

MPPP  , where 

M

C

MP EPMY
****   .  

Since *P and **P  are both optimal policies we obtain    *** PWPW  . In other 

words, 0******  YPYP PP , where  **,YPP  and  **** ,YPP  are strictly positive. The 
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Cobb-Douglas function  YPU P , in two variables PP and Y given by   YPYPU PP ,  

is strictly quasi-concave in the pair of variables  YPP , , where PP  and Y are strictly 

positive. Since *** PP  , then necessarily (since    *** PWPW  )  ***

PP PP  and 

*** C

M

C

M PP  . Hence by strict quasi-concavity 

   *******
******

*********

,
22

222

PWYPYPMin
YYPP

PP
EM

PPPP
W

PP
PP

C

M

C

M
MP

PP








 







 









 








 








 

 

Also, by the convexity of  C  in  C

MP PP ,  and the fact that *P and **P are satisfying 

the budget constraint: 

    BBBPCPC
PP

C 






 

2

1

2

1

2

1

2

1

2

***
***

 

We conclude that  
2

*** PP 
satisfies the budget constraint and the value of its 

expected biodiversity is strictly higher than  *PW . A contradiction. Q.E.D. 

 

Appendix 3 - Impossibility of the Representation of the Symbiotic Probability 

Model by an Independent Probability's Weitzman's Model 

Proof: 

Assume, M

C

M PP  . By (S1) and (S2) we get : 

              MPM PPMPobMPobMobMPMobP  ,Pr0,PrPr,,Pr ,  

Thus we have either 1PP  and/or 0MP . Q.E.D. 

 


