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Abstract: 

 

In this paper, we examine whether particular network structures foster knowledge transfer among 

distinct open-source projects. Deploying panel data, we compare organizations that were in a 

giant component of a network for relatively long periods of time with organizations that joined 

the giant component during the sample period. Our findings show that joining a large pool of 

knowledge (i.e., a giant component) allows projects to gain access to novel knowledge and ideas. 

Moreover, established projects within the giant component benefit differently from changes in 

network structures than projects that only recently entered such giant component of a network.  

 

Keywords: Network Dynamics, Knowledge Spillovers, Social Network, Open Source
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1. Introduction  

 

Product development in community-based organizational settings is becoming an 

increasingly important mechanism through which individual knowledge holders create and 

disseminate knowledge in joint efforts to generate products. OSS generally implies that a 

particular computer software source code is available to the broad public under an OSS license 

(Laurent, 2004.). Such licenses grant the rights to use an entire work, to create a derivative work, 

or to share or market such work subject to the license governing the specific open-source project 

(Bonaccorsi, Rossi, & Giannangeli, 2006; Von Hippel & Von Krogh, 2003; Lerner & Tirole, 

2002). Accordingly, one of the central aspects of OSS development is the project’s ability to 

share and absorb knowledge that has been created within or outside of a distinct OSS project. 

Such spillovers facilitate the transfer of knowledge and ideas within and across researchers and 

development teams. External knowledge may provide a particular project with highly specialized 

competencies and technical flexibility through the formation of informal “learning alliances” that 

may provide accelerated learning processes, a contraction of the product development life cycle, 

and ultimately a sustainable competitive advantage. 

In its traditional form, open-source software (OSS) development is a collaborative effort 

of loosely coordinated and geographically dispersed developers who contribute their time and 

knowledge to establishing and improving software and whose underlying knowledge is made 

accessible to the general population. OSS projects, like virtual teams, are semi-structured groups 

of skilled developers working on interdependent tasks using informal, non-hierarchical, and 

decentralized communication with the common goal of creating a valuable product (Lipnack & 

Stamps, 1997). In contrast to traditional work teams, which enjoy the benefits of face-to-face 

communication, OSS projects face exceptional challenges in forming personal relationships 



Network Dynamics and Knowledge Transfer 
 

 

 

4

(Beyerlein, Johnson, & Beyerlein, 2001), team communication (Pinto & Pinto, 1990) and, 

ultimately, performance (Jehn & Shah, 1997). Accordingly, due to the nature of its 

organizational design and structure, members of dispersed development teams are restricted in 

their exposure to knowledge and know-how.  

Clearly, the evolving social structure that underlies distinct OSS development efforts is a 

critical point of distinction from traditional proprietary, closed-innovation development 

mechanisms. The open-source structure emphasizes the significance of social capital in defining 

organizational traits such as the accessibility of diverse knowledge, the aptitude to recruit 

qualified human capital (Lacetera, Cockburn, & Henderson, 2004), and/or the capacity to 

increase product visibility and increase adoption rates (Burt, 1992; Granovetter, 1985, 2005; 

Uzzi & Gillespie, 2002). This architecture of network ties offers a glimpse into the extent to 

which an entity (i) is rooted in a network, (ii) connects with other entities, and (iii) connects with 

other structurally embedded entities. Accordingly, an entity that is characterized by higher levels 

of embeddedness is expected to possess higher levels of social capital, which should, in turn, 

exert a positive impact on both the technical and commercial successes of the open-source 

project with which the entity is associated (Grewal, Lilien, & Mallapragada, 2006).  

We contribute to research on organizational learning by studying how changes in network 

structures can foster knowledge transfers in the case of OSS projects hosted at sourceforge.net. 

Sourceforge.net facilitates software developer collaboration by providing a free online platform 

for managing projects, communications, and software code. It is, by far, the largest repository of 

registered OSS development projects during the period of our study. In addition to providing 

information about the project (date established, project stage, etc.), each Sourceforge.net project 

contains a list of registered team members who contribute their time and knowledge to the 
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advancement of one or more OSS projects.  Following Grewal, Lilien, & Mallapragada (2006) 

and Fershtman and Gandal (2011), we construct the project network by defining two projects to 

be connected if they have a developer in common. We can also construct the related contributor 

network by defining two contributors as connected if they work together on the same project.   

Several other recent studies have examined the relationship between network structure 

and performance (Ahuja, 2000; Calvó-Armengol, Patacchini, & Zenou, 2009).2 Our paper is 

closest to that of Fershtman and Gandal (2011), who focus on spillovers that occur by means of 

the interactions of different researchers or developers in OSS projects. The theoretical model 

developed by Fershtman and Gandal (2011) shows that project spillovers imply (i) positive 

association between degree and project success and (ii) positive associations between closeness 

and project success. Using cross-sectional data, they demonstrate that the structure of the product 

network is associated with the project’s success, which provides support for knowledge 

spillovers.  

However, none of these papers discussed above focuses on the relationship between 

changes in the network architecture and changes in success over time, which is a key focus of 

our paper.  Further, as network structures evolve over time, projects connect to (and disconnect 

from) one another. Typically, mature network structures reflect one giant and many small 

components. The dynamics of network formation will generate the following two different sets 

of organizations in a giant component: (i) organizations that were in the giant component 

                                                 

 
2
 Some recent studies have examined the relationship between network structure and behavior (e.g., Ballester, 

Calvó-Armengol, & Zenou, 2006; Calvo-Armengol & Jackson, 2004; Jackson & Yariv, 2007; Karlan, Mobius, 

Rosenblat, & Szeidl, 2009).   Goyal, van der Leij and Moraga-Gonzalez (2006) constructed a co-authorship network 

using data on published papers that were included in EconLit between 1970 and 2000 to study network properties 

over time.  
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throughout a specified period of time and (ii) organizations that joined the giant component 

sometime during such specified period of time.  

What differences are there between these two sets of organizations? Because we have 

yearly panel data from 2006-2009, the second key focus of the paper is to compare organizations 

that were in the giant component of a network for relatively long periods of time with 

organizations that joined such giant components during the sample period. To the best of our 

knowledge, this aspect of network formation has not been explored in the literature. 

We find that in general, changes in the network architecture are positively associated with 

changes in project success. However, we also find that established projects within the giant 

component benefit differently from changes in network structures than do projects that only 

recently entered such a giant component of a network. In particular, we find the following: 

1. For both sets of organizations, there are positive associations between the change in 

degree and the change in an organization’s performance. Yet, these associations are 

stronger for organizations moving into the giant component than for organizations that 

have always been in the giant component.  

2. For both sets of organizations, there are positive associations between the change in 

closeness and the change in an organization’s performance. Further, these associations 

are stronger for organizations moving into the giant component than for organizations 

that have always been in the giant component.   

3. The addition of ‘Stars’ (developers who work on five or more projects) is positively 

associated with changes in project success for projects already in the giant component in 

January 2006, but this association does not exist for projects that joined the giant 

component during the 2007-2009 period.    
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The first two results suggest that joining a large pool of knowledge (i.e., the giant 

component) allows projects to gain access to high-impact, novel knowledge and ideas. We 

believe that the third result can be explained as follows: the more prolonged the exposure of 

projects to external projects and developers, the greater is the positive impact on project success 

from the addition of a Star. 

2. Research Setting and Data 

This paper uses a replica of publicly available data from Sourceforge.net that is hosted at 

Notre Dame University. Sourceforge.net facilitates software developer collaboration by 

providing a free online platform for managing projects, communications, and software code. 

Sourceforge.net is the largest repository of registered OSS development projects during the 

period of our study.  

Each SourceForge.net project contains a list of registered team members who contribute 

their time and knowledge to the advancement of an OSS project. Each project links to a 

“developer page” that contains meta-information on a particular contributor, including the date 

the developer joined the project, the developer’s functional description (e.g., administrator, 

developer) and his or her geographic location. These projects are managed by project 

administrators. Because accessibility to OSS projects is unrestricted and because the contributors 

can be identified by their unique user names, we utilize this information to construct a two-mode 

network that relates projects via registered contributors. Accordingly, we define two OSS 

projects as being connected when there are common contributors who participate in both 

projects.
3
  

                                                 

 
3 We assume that project members are added to the list because they make a contribution to the project that involves 

an investment of time and effort. A project is thus understood as a collaborative effort by its contributors. 
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Each project links to a standardized “Project page” that lists descriptive information on a 

particular project, including a statement of purpose, the intended audience, the license, and the 

operating system for which the application is designed. Moreover, a “Statistics page” shows 

various project activity measures, including the number of project page views and downloads 

registered for the focal project. Although some data are available for other periods, statistics on 

downloads are available only for the 2006–2009 period.
4
 Therefore, we deploy panel data from 

2006–2009 to construct two distinct two-mode networks: (i) the project network and (ii) the 

contributor network. In the former, the nodes are the OSS projects, and two projects are linked 

when there are common contributors who work on both. In the latter, the nodes of the contributor 

network are the contributors, and two contributors are linked if they participated in at least one 

OSS project together.  

Regarding the project network in 2009, we find that 84.3% percent of the projects have 

either one or two contributors, 9.2% have three to four contributors and 6.5% have five or more 

contributors (see Table 1). With regard to the contributor network in January 2009, 91.3% of the 

contributors worked on one or two projects, 6.5% of the contributors worked on three to four 

projects, and 2.1% of the contributors worked on five or more projects.
5
 While we focus on the 

project network, our analysis also includes a key feature of the contributor network: contributors 

who work on five or more projects. We define such contributors as ‘Stars.’  

 

  

                                                 

 
4
 Page view data are not available over time, but page views are highly correlated with downloads. 

5
  These percentages were virtually identical in 2006 as well. 
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Table 1: Distribution of components in project networks—January 2009 

Project Network Contributor Network 

Contributors per project 

Percent of  

total projects 

Projects per 

contributor 

Percent of 

Contributors 

1 69.9 1 77.2 

2 14.4 2 14.1 

3-4 9.2 3-4 6.5 

5-9  4.8  5-9  1.9  

10 or more  1.7  10 or more  0.2  

 

Having panel data from 2006 to 2009 allows us to focus on differences over time. This 

approach is helpful because it is difficult to determine causality from cross-sectional data, and, 

therefore, unobserved fixed project effects might be driving success. Because we do not have 

data on these fixed project effects, they are included in the error term when running cross-

sectional analyses. If these unobserved effects are correlated with the right-hand-side variables, 

the estimates from the cross-sectional analysis will be biased; however, this problem is 

eliminated when using data on differences over time. 

 

2.1 Dependent Variable 

We wish to examine whether knowledge spillovers play a significant role in the 

development of OSS projects and evaluate the importance of Stars. Consistent with prior 

research, we measure project performance by examining the number of times a project has been 

downloaded (Fershtman & Gandal, 2011; Grewal et al., 2006). We focus on downloads of the 

executable, compiled product because users will not typically download the source code. We 

define ∆Downloads as the difference between the total numbers of downloads in January 2009 

and January 2006. We further define l∆Downloads ≡ ln(1+∆Downloads), where “ln” means the 

natural logarithm, and ∆ is the difference operator.  
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2.2 Independent Variables 

Knowledge spillovers from project to project occur via individuals. In the case of OSS 

projects, contributors frequently port code that is embedded in one project into another project to 

which they contribute. Direct spillovers occur when projects have a common developer who 

transfers information and knowledge (primarily code) from one project to another. Project 

spillovers may also be indirect, i.e., when knowledge is transferred from one project to another 

when the two projects are not directly linked (there is no common contributor). Because we do 

not directly observe spillovers, we will examine the relationship between the network structure 

and project success to identify the relative importance of knowledge spillovers.  

We define two network centrality measures: (i) a project’s degree is defined as the 

number of projects with which the focal project has a direct link or common developers and (ii) a 

project’s closeness centrality, which is defined as the inverse of the sum of all distances between 

a focal project and all other projects multiplied by the number of other projects.
6
 Intuitively, 

closeness centrality measures how far each project is from all the other projects in a network.
7
  

Accordingly, we define ∆Degree as the difference in the degree centrality of the project 

between January 2006 and January 2009. Similarly, we define ∆Close as the difference in the 

closeness centrality of the project between January 2006 and January 2009. Next, we define 

∆Cpp as the change in the number of contributors that participated in the project during the 

three-year period from January 2006 to January 2009. Because the number of contributors might 

fall or rise over time, ∆Degree, ∆Close, and ∆Cpp can be either positive or negative. 

                                                 

 
6
 See Freeman (1979), pp. 225-226 and Wasserman & Faust (1994), pp. 184-185 for details on how closeness 

centrality is calculated. 
7
 Closeness centrality lies in the range [0,1]. In the case of a Star network with a single project in the middle that is 

connected to all other projects, the closeness centrality of the project in the center is one. 
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In addition to project downloads and the network variables described above, we have data 

for a group of control variables. In Sourceforge.net, projects evolve through six stages, beginning 

with planning (1) and continuing to pre-alpha (2), alpha (3), beta testing (4), production (5), and 

finally maturity (6). We define a dummy variable, ∆stage, that assumes the value one if there 

was stage progression (e.g., from alpha (3) to production (4)) and zero if there was no change in 

stage. 

To control for the amount of time that the project has been in existence, we define the 

variable years_since as the number of years that have elapsed since the project first appeared at 

Sourceforge.net: lyears_since = ln(years_since). 

Finally, we define a Star as a contributor who worked on five or more projects. This 

variable comes from the contributor network, not the project network. Clearly, having a "Star" 

contributor join a project gives that project more connections to other projects. An interesting 

question is whether adding a "Star" to the team of developers has an effect on the success of a 

project. To examine this effect, we include a variable, denoted as ∆Star5, which can take on 

positive or negative values and is defined as the change in the number of Stars on a project from 

2006 to 2009. 

 

2.3 Discussion of the Data 

In our panel data set, we have 42,796 projects with complete information.
8
 Complete 

information indicates that the projects existed in both 2006 and 2009 and that we have data for 

all the relevant variables discussed above. We exclude observations for ∆degree, ∆closeness, and 

                                                 

 
8
 Importantly, because we have data on the participants in every project, our networks are constructed using all 

projects, including projects without complete information. 
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∆Cpp that are (approximately) in the lowest 5% of these distributions. Specifically, we exclude 

961 observations of ∆degree that are less than or equal to -4, an additional 394 observations of 

∆Cpp that are less than or equal to -1, and an additional 557 observations of ∆closeness that are 

less than -0.0037. We exclude these observations because large negative changes in Cpp, degree, 

and closeness might simply be explained by those particular projects being more likely to 

remove any inactive programmers from their projects’ websites in comparison with other 

projects. Our results are also robust to including all 42,796 observations. We report these results 

in the appendix. 

After excluding the 1,912 projects discussed above, we are left with 40,884 observations 

for the analysis. Approximately one-third of the projects in the main part of the paper (13,474) 

are in the giant component, and the second-largest component is small (64 projects.). This 

distribution (one giant component and many small components) is typical of many networks.  

Particularly interesting are the 2,656 projects that were not in the giant component in 2006 

but were included in the giant component in 2009. These projects comprise 20% of the giant 

component. Not surprisingly, these observations exhibit relatively large changes in degree, Cpp, 

closeness, stage and Stars. An interesting question is whether these projects have different 

properties than other projects in the giant component.  

Descriptive statistics are shown in Table 6 in the appendix. The mean and median 

download changes for projects in the giant component (mean = 66,819 and median = 930) is 

much greater for projects in the giant component than for projects outside of the giant component 

(mean = 20,734 and median = 373).  

When we compare the two subgroups within the giant component—namely the projects in 

the giant component throughout the 2006–2009 period and the projects that moved into the giant 
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component during the 2006–2009 period—we find no difference in the mean or median changes 

in downloads among the groups. Projects that moved into the giant component have much higher 

changes in degree, closeness, and the number of Stars than projects in the giant component 

throughout the 2006–2009 period (see Table 6). 

Correlations between changes in degree, closeness, Stars, and Cpp are all relatively low, as 

shown in Table 7 of the appendix. The highest correlation is between ∆Cpp and ∆degree, but that 

correlation is only 0.53. No other correlation exceeds a magnitude of 0.34. 

 

3. Empirical Analysis: 

The relationship between the number of contributors and downloads is likely non-linear: 

additional contributors are likely associated with a larger number of downloads, but the marginal 

effect of each additional contributor declines as the number of contributors increases. The same 

is likely true for the relationship between network variables and downloads as well, which 

suggests that a "log/log" model is appropriate.
9
 Thus, we use the following estimating equation: 

 

 [1] l(∆Downloads) = β0 + β1 (l∆Cpp) + β2 (l∆Degree) + β3 (l∆Close) + β4 (∆Star5) +  

β5 (∆Stage) + β6 (lyears_since) + ε, 

 

                                                 

 
9
 We estimate a log/log specification. As with the case of downloads, all independent variables (except changes in 

the number of Stars and changes in stage) are in logarithmic form. We denote this by including an 'l' before the 

variable name—e.g., l∆Cpp is the logarithm of the change in the number of contributors. We add a constant to 

l∆Closeness, l∆Cpp, and l∆Degree such that the logarithm is defined. 
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where ∆ is the difference operator and ε is a white-noise error term.
 10

 We estimate [1] for the 

following four cases: 

Case I:  Projects outside of the giant component 

Case II:  Projects in the giant component in January 2009 

Case IIA: Projects in the giant component throughout the 2006–2009 period 

Case IIB: Projects that moved into giant component during the 2006–2009 period 

 

3.1 Knowledge Spillovers via Contributors 

Table 2 shows that a change in the degree centrality is positively associated with a 

change in the number of downloads for projects outside the giant component (Case I: β = 0.42, 

p<0.0001) and projects in the giant component (Case II: β = 0.34, p < 0.0001.) In fact, Table 2 

also shows that the effect is approximately twice as large for the projects that moved into the 

giant component (Case IIB: β = 0.63, p < 0.0001) than for the projects that were always in the 

giant component (Case IIA: β = 0.30, p < 0.0001).  

Case II in Table 2 also shows that changes in closeness centrality are positively 

associated with changes in project performance.11 Table 2 also shows that changes in closeness 

are positively and significantly associated with changes in the number of downloads for both the 

projects that moved into the giant component (Case IIB: β = 0.89, p < 0.01) and the projects that 

were always in the giant component (Case IIA: β = 0.15, p < 0.0001). However, the effect is 

much stronger for the projects that moved into the giant component.  

                                                 

 
10

 We examine alternative functional forms as well. Not surprisingly, we find that the log/log specification has a 

much higher adjusted R-squared than the log/linear specification and a linear/linear specification performs even 

more poorly. 
11 Recall that when we employ closeness in the analysis, we must restrict attention to connected projects.  
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We believe that the results regarding the associations between (i) degree and project 

success and (ii) closeness and project success mean that spillovers are particularly pronounced 

for those projects that joined the giant component during the 2007-2009 period. This result 

suggests that joining a large pool of knowledge (i.e., the giant component) allows projects to gain 

access to high-impact, novel knowledge and ideas.  

Table 2 also shows that changes in the number of contributors are positively associated 

with changes in the number of downloads. This association is true for projects outside the giant 

component (Case I) and projects in the giant component (Case II). When we split the giant 

component into two groups, we see that this result holds as well for projects always in the giant 

component (Case IIA) and projects that moved into the giant component between 2006 and 2009 

(Case IIB). 

 

3.2 Knowledge Spillovers via Star Contributors 

Table 2 shows that a change in the number of Stars does not significantly influence 

downloads for projects outside the giant component (Case I: β = -0.016, p = 0.81). However, 

changes in the number of Stars are significantly positively associated with changes in the number 

of downloads for projects that are in the giant component (Case II: β = 0.14, p = 0.01). Thus, 

changes in the number of Stars are positively associated with changes in the number of 

downloads in the giant component even after controlling for the network structure. This effect 

does not exist for projects outside the giant component, which suggests that the spillovers via 

Stars are due in part to being in the giant component. 

We then compare the impact of Star developers who were in the giant component 

consisting of 10,818 projects throughout the entire period of the study (Case IIA) to those 

associated with the 2,656 projects who later joined the giant component sometime between 
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January 2006 and 2009 (Case IIB). Table 2 shows that whereas changes in the number of Stars 

on a project are not significantly associated with changes in downloads for projects that moved 

into the giant component (Case IIB: β = 0.064 p = 0.60), changes in the number of Stars are 

significantly positively associated with changes in the number of downloads for projects that 

were always in the giant component (Case IIA: β = 0.14, p = 0.04). We interpret these results to 

mean that the more prolonged the exposure of projects to external projects and developers, the 

greater is the positive impact on project success from the addition of a Star.  

 

Table 2: Main results 

DV: l∆downloads 

Case I 

Outside the Giant 

Component 

Case II 

In the Giant 

Component 

Case IIA 

Always in the 

Giant Component 

Case IIB 

Moved into the 

Giant Component 

Constant 6.30 (32.42) 5.00 (14.95) 4.71 (12.92) 7.65 (5.53) 

l∆Cpp 1.32 (18.83) 1.73 (33.33) 1.80 (30.19) 1.42 (13.25) 

l∆degree 0.42 (7.07) 0.34 (6.53) 0.30 (5.39) 0.63 (3.76) 

l∆closeness  0.15 (4.41) 0.15 (4.22) 0.89 (2.73) 

∆Stars5 -0.016 (-0.25) 0.14 (2.48) 0.14 (2.08) 0.064 (0.53) 

∆stage 1.04 (17.07) 0.92 (10.56) 0.99 (8.97) 0.76 (5.53) 

lyears_since -0.87 (-12.41) 0.41 (3.69) 0.54 (4.18) -0.04 (-0.18) 

Moved into Giant 

Component 
 -0.59 (-6.41)   

# of Observations 27,410 13,474 10,818 2,656 

Adjusted R-squared  0.04 0.14 0.14 0.16 

 

4. Projects with more than one contributor 

 

We repeat the analysis for projects with more than one contributor. Table 3 shows that all of the 

main results discussed above continue to hold; thus, our results are robust to excluding projects 

with just a single contributor. The result for Stars has borderline significance in Case IIA; again, 

however, Stars seem to matter more for projects that have benefitted from being in the giant 

component for a relatively long period of time than for projects that moved into the giant 

component more recently (Case IIB). 
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Table 3: Projects with more than one contributor  

Dept Variable: 

l∆downloads 

Case I 

Outside the Giant 

Component 

Case II 

In the Giant 

Component 

Case IIA 

Always in the 

Giant Component 

Case IIB 

Moved to the Giant 

Component 

Constant 6.00 (16.46) 4.67 (10.78) 4.35 (9.24) 8.25 (4.51) 

l∆Cpp 1.51 (17.54) 1.54 (26.88) 1.61 (24.94) 1.18 (9.31) 

l∆degree 0.41 (4.28) 0.37 (6.25) 0.33 (5.31) 0.65 (3.03) 

l∆closeness  0.15 (3.42) 0.14 (3.24) 1.08 (2.45) 

∆Stars5 -0.036 (-0.32) 0.14 (1.89) 0.13 (1.62) 0.062 (0.39) 

∆stage 0.89 (8.50) 0.75 (7.11) 0.80 (6.15) 0.63 (3.61) 

lyears_since -0.61 (-4.38) 0.77 (5.21) 0.90 (5.37) 0.23 (0.74) 

Moved into Giant Component  -.060 (-5.10)   

# of Observations 8,094 8,632 7,061 1,571 

Adjusted R-squared 0.07 0.15 0.15 0.15 

 

In Table 8 in the appendix, we include all observations. Although the R-squared 

coefficients are much smaller in the regressions in Table 8 than in Table 2, the results are 

qualitatively unchanged, which greatly strengthens the main results of the paper. 

 

5. Testing For Endogeneity 

Although our discussion focuses on how the network structure affects success, the 

reverse may be true as well: contributors may want to join popular projects. Developers may 

want to be associated with more successful projects, thereby making the number of contributors 

(and thus the degree) endogenous.
12

 In fact, the Sourceforge.net website states that, “as a 

project's activity rises, SourceForge.net's internal ranking system makes it more visible to other 

developers who may join and contribute to it. Given that many open-source projects fail due to a 

lack of developer support, exposure to such a large community of developers can continually 

breathe new life into a project.” 

                                                 

 
12

 Closeness can also be endogenous, but only under a very unlikely scenario.  
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Here, we discuss the tests that we employ to investigate potential endogeneity. Because 

we are using panel data with network variables, several approaches to test for the endogeneity of 

degree and closeness are possible. We believe that the most convincing test for endogeneity is to 

restrict ourselves to those projects that had no changes in the number of contributors over the 

2006–2009 period. In such a case, reverse causality (i.e., the effect that describes the tendency to 

join popular projects) is absent.
13

 Note that the degree can change for projects that have no 

changes in the number of their contributors. The mechanism by which this change can occur is 

that the degree centrality of the original project also increases when a contributor on a particular 

project joins another project.
14

  

Our results describing what occurs when we restrict the analysis to projects that had no 

change in the number of contributors are reported in Table 4 for Cases II, IIA, and IIB. As 

expected, we find that the effect of changes in closeness on changes in downloads is completely 

robust to all these ‘tests’ for endogeneity, which is not surprising because closeness can only be 

endogenous under an unlikely scenario. Similarly, the results regarding Stars are virtually 

unchanged from the results provided in Table 2. 

In the case of degree, a comparison between Tables 2 and 4 shows that the results for 

degree are slightly smaller in Table 4 because of the 'joining popular projects effect.' 

Nevertheless, in all three cases (II, IIA, and IIB,) the estimated coefficients for degree are 

statistically significant. This analysis suggests that reverse causality is not driving the results.   

 

                                                 

 
13

 Of course, it is possible that some contributors joined and some left with a net change of zero, but the 

overwhelming majority of such projects had no changes in personnel.   
14

  Similar to degree, the number of Stars on a project can change even when the number of contributors does not; 

this occurs when a contributor on one project joins other projects and transitions from working on fewer than five 

projects to working on five or more projects. 
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Table 4: Testing for Endogeneity 

 

6. Conclusion: 

Prior research studying the relationship between network structure and performance has 

ignored the implications of the dynamics of knowledge spillovers that occur by means of the 

interaction of different developers collaborating in different research projects over time. We 

contribute to the research on organizational learning by studying how changes in network 

structures can foster knowledge transfer that occurs through developers interacting across 

distinct development projects. Importantly, we compare organizations that were in the giant 

component of a network for relatively long periods of time with organizations that joined such 

giant components during the sample period. We find that in general, changes in the network 

architecture are positively associated with changes in project success.  However, we find that 

established projects within the giant component benefit differently from changes in network 

structures than projects that only recently entered such a giant component of a network.   

Our study advances the understanding of the link between network structures, agent network 

position, and organizational performance; nevertheless, it is subject to a few limitations. First, we 

have theorized about Stars’ capacities to access, assimilate, and diffuse explicit and tacit 

Dept Variable: 

l∆downloads 

Case II: 

In the Giant 

Component: 

∆Cpp = 0 

Case IIA: 

Always in the Giant 

Component 

∆Cpp = 0 

Case IIB: 

Moved into the Giant 

Component 

∆Cpp = 0 

Constant 7.28 (19.41) 7.13 (17.48) 9.06 (6.09) 

l∆Cpp    

l∆degree 0.25 (3.98) 0.22 (3.35) 0.50 (2.53) 

l∆closeness 0.17 (4.54) 0.17 (4.39) 0.81 (2.21) 

∆Stars5 0.17 (2.53) 0.16 (2.10) 0.11 (0.82) 

∆stage 0.86 (8.71) 1.31 (8.80) 0.93 (4.81) 

lyears_since -0.077 (-0.62) 0.0043 (0.03) -0.38 (-1.47) 

Moved to Giant Component -0.64 (-6.30)   

# of Observations 10,421 8,578 1,843 

Adjusted R-squared 0.02 0.02 0.03 
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knowledge via boundary-spanning activities. Future research should attempt to measure these 

latent variables that underlie the innovativeness and productivity of development teams.  
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Appendix: 

 

Table 6: Descriptive Statistics 

 

P
ro

je
ct

s 
o
u

ts
id

e 
th

e 
g
ia

n
t 

 

co
m

p
o
n
e
n
t 

 

Variable Observations Mean  Std. Dev. Min Max 

∆download 27410 20733.59 1109424 0 1.71e+08 

∆between 27410 -1.08e-07 1.52e-06 -.0000842 9.55e-09 

∆Closeness 27410 -.0015933 .0067119 -.0418276 .0001101 

∆Degree 27410 -.0322875 1.134059 -4 19 

∆Cpp 27410 .0694637 .5928583 -1 20 

∆Stage 27410 0.0444728 .2061469 0 1 

∆Stars5 27410 -.0048887 .2240058 -1 1 

years_since 27410 6.57 1.55 3.97 10.15 

 

P
ro
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ct

s 
al

w
ay

s 
in

 t
h
e 

g
ia

n
t 

co
m

p
o

n
e
n
t 

 

Variable Observations Mean Std. .Dev. Min Max 

∆download 10818 69818.77 2052881 0 1.98e+08 

∆between 10818 8.90e-07 .0000388 -.0007162 .0024578 

∆Closeness 10818 .0000653 .002364 -.0036971 .0200627 

∆Degree 10818 .6863561 3.905711 -4 103 

∆Cpp 10818 .5878166 3.099011 -1 104 

∆Stage 10818 .0444629 0.2061308 0 1 

∆Stars5 10818 .0086892 .3565553 -1 1 

years_since 10818 7.34 1.59 3.97 10.16 
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n
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t 

 

Variable Observations Mean Std. Dev. Min Max 

∆download 2656 54599.41 878090.8 0 3.74e+07 

∆between 2656 3.66e-06 .0000167 -9.03e-09 .0006224 

∆Closeness 2656 .0297832 .004486 .0160351 .0454347 

∆Degree 2656 1.907003 3.467798 -4 81 

∆Cpp 2656 .8524096 3.349011 -1 86 

∆Stage 2656 .  1125753  0.316 0 1 

∆Stars5 2656 .1716867 .4432846 -1 1 

years_since 2656 6.34 1.60 3.97 10.11 

 

Table 7: Correlation Among All Centrality Variables (Giant Component: N=13,474) 

 

 

 

 

 

  

∆Cpp ∆degree ∆closeness Star 

∆Cpp 1.00    

∆Degree 0.53 1.00   

∆Closeness 0.06 0.18 1.00  

Star 0.09 0.34 0.21 1.00 
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Table 8: Replicating Analysis in Table 2 Using All Observations  

 

Dependent Variable: 

l∆downloads 

Case II: 

In the Giant Component 

Case IIA: 

Always in the Giant 

Case IIB: 

Moved into the Giant 

Constant -12.45 (-7.86) -11.18 (-6.61) -29.29 (-5.92) 

l∆Cpp 4.30 (13.25) 3.94 (11.16) 5.63 (6.71) 

l∆Degree 1.10 (3.87) 0.93 (3.13) 5.26 (4.71) 

l∆Closeness 0.46 (2.95) 0.34 (2.04) 1.97 (3.94) 

∆Stars5 0.33 (6.03) 0.29 (4.59) 0.18 (1.52) 

∆Stage 1.52 (17.55) 1.69 (15.75) 1.00 (7.13) 

lyears_since 0.33 (2.87) 0.45 (3.46) -0.10 (-0.44) 

Moved into giant -0.64 (-4.19)   

# of Observations 14,939 12,251 2,688 

Adjusted R-squared 0.05 0.04 0.11 


