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Abstract

Coordination games often have multiple equilibria. The selection
of equilibrium raises the question of belief formation: how do players
generate beliefs about the behavior of other players? This paper takes
the view that the answer lies in history, that is, in the outcomes of sim-
ilar coordination games played in the past, possibly by other players.
We analyze a simple model in which a large population has to make a
simultaneous decision regarding participation in a coup attempt. We
assume a dynamic process that faces different populations with such
games for randomly selected values of a parameter. We show that his-
tory serves as a coordination device, and determines for which values of
the parameter a revolution would succeed. We also show that, for cer-
tain values of the parameter in question, the limit behavior depends
on the way history unfolds, and cannot be determined from a-priori
considerations.

1 Introduction

Consider a population of identical individuals who have to make a simulta-

neous decision regarding participation in a coup attempt. The probability
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of success increases with the proportion of individuals who decide to par-

ticipate. The nature of the problem could be explained in the context of a

two-player stag-hunt game. Assume that each player has to decide whether

to join the rebellion (R) or to opt out (O).

O R
O 7, 7 6, 0
R 0, 6 9, 9

In this two-person example, the rebellion will succeed if and only if both

players choose R. In this case, both players will be better off than in the

status quo (9 > 7). That is, the equilibrium (R,R) Pareto dominates the

equilibrium (O,O). Yet, strategy O guarantees a higher minimal payoff than

does R. Indeed, the equilibrium (O,O) risk dominates (R,R) (Harsanyi and

Selten (1988)), and may be a reasonable prediction of the outcome of the

game even though (R,R) is a Pareto dominant equilibrium.

In this paper we analyze a large population version of this revolution

game. In this game, a continuum of players have to make a simultaneous

decision regarding their participation in a coup attempt. The probability

that the revolution succeeds depends on the proportion of players who de-

cided to join the attempt. As in the game above, everyone will be better off

if the revolution succeeds, but in case of failure the attempting rebels will

be punished. We will also assume that, should the revolution succeed, every

individual has an incentive to be among the rebels rather than to remain

obedient.

Consider the decision of a single player in this game. Imagine that rumors

have been spreading that the revolution would start tonight. She can ignore

the rumors and go to sleep, or take to the streets. For simplicity, assume

that this is a one-shot, binary decision. The potential rebel sits at home and

attempts to assess the probability that the revolution would succeed. How

would she do that?

We maintain that the assessment of this probability would and should be
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based on the results of past coup attempts in similar games. These games

may have been played by the same population or by others. They may have

been more or less similar. Both the nature of the game and the identity

of the population playing it should be taken into account in the evaluation

of the similarity of past games to the present one. But ignoring these past

games would hardly seem a rational way of generating beliefs.1

In this paper we are interested in a dynamic process, according to which

large populations are called upon to play a simple “revolution” game, where

the games differ from each other by one parameter at most. This parameter

designates the status quo, and the lower it is, the more do the people have to

gain from a successful revolution. We assume that players generate beliefs

regarding the success of a revolution based on the similarity-weighted rela-

tive frequency of successes in the past: they calculate relative frequencies,

but each past case is assigned a weight that is proportional to its similarity

to the game at hand.

Our dynamic process may explain a “Domino” effect. Consider, for ex-

ample, the revolutions in the Soviet block in the late ’80s and early ’90s. A

successful revolution in one country renders the success of a revolution in

another country more likely, and vice versa. This process will also exhibit

path-dependence. Assume, first, that the first attempted revolution occurs

in a country in which a revolution is almost inevitable, because the present

conditions leave people with nothing to lose. A successful attempt in this

country would make it more likely that a revolution would succeed in a sim-

ilar country, even if the conditions in the latter are not as dire. Continuing

in this way, one may generate a sequence of successful revolutions.

If, on the other hand, the first revolutionary attempt occurs in a country

in which most people have little to gain from a revolution, this attempt might

1The belief formation process may be embedded in a meta-game, which will also have
a flavor of a coordination game. We assume, however, that people have a fundamental
tendency to expect the future to be similar to the past. To quote Hume (1748), "From
similar causes we expect similar effects."
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fail. If it is then followed by a revolution attempt in a similar country, where

conditions are worse yet similar, a revolution in the latter may also fail, and,

continuing in this way one may generate a sequence of failed revolutions.

We conclude that history serves as a coordination device. It informs the

belief formation process of all individuals, and, being commonly known, it

coordinates among them. However, beliefs that are history-dependent may

lead to different behavior, depending on the way history unfolds.

The rest of this paper is organized as follows. We first discuss related

literature. Section 2 describes the stage game. We devote Section 3 to

modeling the way players generate beliefs given history. Finally, Section 4

describes the dynamic process and provides the main result of the paper.

1.1 Related Literature

The game theoretic literature has witnessed many attempts to select equi-

libria based on the parameters of the game. The equilibrium selection

literature includes many notions that are defined by the game itself (see

van Damme (1983)), such as the risk-dominance criterion mentioned above.

Other types of considerations attempted to embed the game in a dynamic

process (Young (1993), Kandori, Mailath, and Rob (1993), Burdzi, Frankel

and Pauzner (2001)) or in incomplete information set-up (Carlsson and van

Damme (1994)).

It is noteworthy that risk dominance has emerged as the preferred se-

lection criterion based on quite different types of considerations. On the

other hand, the literature on network externalities tends to favor Pareto

dominant equilibria over risk dominant ones (see Katz and Shapiro (1986)).

This suggests a more agnostic view, according to which the parameters of

the game cannot, in general, predict equilibrium selection. It appears that

game theoretic considerations could be used to impose certain restrictions

on the possible outcomes, but the actual selection of an equilibrium is often

left to history, chance, institutional details, or other unmodeled factors.
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The conceptualization of a revolution as a coordination game dates back

to Schelling (1960) at the latest. There exist alternative conceptualizations

in the political science literature, such as Muller and Opp (1986), who em-

phasize the public good aspect of a revolution. Yet, the coordination game

model of a revolution has been the subject of many studies. Lohmann (1994)

studied the weekly demonstrations in Leipzig and the evolution of beliefs

along the process. More recently, Edmond (2003) studied the effect of mass

media on revolutions, whereas Angeletos, Hellwig, and Pavan (2004) focus

on a learning process by which individuals form beliefs. As in Lohmann

(1994) and Angeletos, Hellwig, and Pavan (2004), we study the evolution of

beliefs in a game that is played repeatedly. However, as opposed to these

papers, our game is played by a new population at every stage. Thus, our

focus is on the generation of prior beliefs (over other players’ actions), based

on similar games, rather than on the update of already existing prior beliefs

by Bayes’s law.

2 The Stage Game

We describe a symmetric two-stage extensive form game Gx depending on

a parameter x ∈ [0, 1]. There is a continuum of players [0, 1]. In stage

1 all players move simultaneously. The set of moves for each player i is

Si = {0, 1}, where 1 stands for participation, and 0 — for opting out.
In stage 2, after each player determined her move in {0, 1}, nature

chooses a move in {F,S}, which stand for Failure and for Success of the rev-
olution, respectively. Nature’s move depends on the set of players choosing

1 in stage 1, A ⊂ [0, 1]. Specifically, if A is Lebesgue-measurable, we assume
that nature chooses S with probability λ(A), where λ stands for Lebesgue’s

measure. If A is non-measurable, the probability of nature choosing S can

be defined arbitrarily (say, by the inner measure of A). At equilibrium, the

set A will be measurable.

After each player determined her choice of participation (0 or 1) and
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nature determined the success of the revolution (by the probability λ(A)),

the game is over. The payoff of each player depends only on her own choice of

participation, and on nature’s move (i.e., on the success of the revolution).

The payoff function u = ui for every i ∈ [0, 1] is given by the following
matrix:

S(uccess) F (ailure)
1(Y ES) 1 0
0(NO) x+1

2 x
(1)

where x ∈ [0, 1] is the parameter of the game.
The interpretation of this matrix is as follows. The worst thing that can

happen to an individual in this game is to participate in a failed coup. The

result is likely to involve imprisonment, exile, decapitation, and the like. We

normalize this worst outcome to 0. The best thing that can happen to an

individual is that she participates in a revolution that succeeds. In this case

she is a part of a (presumably) better and more just society. We normalize

this payoff to 1.

An individual who decides to participate in the revolution therefore de-

cides to bet on its success with the extreme payoff of 0 and 1. Between

these extreme payoffs lie the payoffs for an individual who decides to opt

out, foregoing the chance of being part of the revolution. The payoff of such

an individual still depends on the outcome of the revolutionary attempt.

Should this attempt fail, such an individual would get x, which is a measure

of the well-being of the people in the status quo. We implicitly assume that

such an individual, who did not participate in a failed coup d’etat, will be

unaffected by the attempted coup. If, however, the revolution succeeds, even

the individuals who were passive will benefit from the new regime. However,

not being part of the revolutionary forces, they would not reap the benefits

of revolution in its entirety. We choose to set their payoff to the arithmetic

average between the full benefit, 1, and the status quo, x.

Observe that if x = 1, there is nothing to be gained from a revolution.

In this case the well-being of the people in the status quo is just as good
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as it could possibly be in the case of a successful revolution, and joining

a revolution is a dominated strategy. This is what we would expect the

situation to be in a democracy.

If, on the other hand, x = 0, the well-being of the people in the status

quo is comparable to the well-being of an individual who participated in a

failed revolution. This describes a situation in which the people has nothing

to lose, as in a situation of starvation. In this case, indeed, joining the

revolution is a dominant strategy.

In between, when 0 < x < 1, lie the cases that are strategically more

interesting: in these cases, each individual will be better off if the revolution

succeed, but she prefers to be passive if the revolution is doomed to fail. In

these situations there is no dominant strategy, and each individual player has

to determine her choice depending on her beliefs about the other players’s

choices.

Assume, then, that an individual i attempts to estimate the expected

utility of a player playing 1 (participating in the revolution) versus 0 (opting

out). Realizing the nature of the game, the individual knows that the prob-

ability of a revolution succeeding is independent of her own choice. Suppose

that individual i’s belief over the measure of other individuals who choose 1

is given by a measure µi over (the Lebesgue σ-algebra on) [0, 1]. That is, for

every Lebesgue-measurable set B ⊂ [0, 1], individual i assigns probability
µi(B) to the event that the measure of individuals who eventually choose

1 (with or without herself) lies in B. Individual i’s subjective probability

that the revolution would succeed is, therefore,

bpi = Z
[0,1]

pdµi(p)

That is, individual i is assumed to calculate the overall probability of a

successful revolution by Bayes’s formula, taking into account the assumption

that the probability of success equals the measure of the set of individuals

who participate in the coup.
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Let U(k) denote the expected payoff for an individual i who chooses

strategy k ∈ {0, 1}, given beliefs bpi. That is, U(1) = bpi and U(0) = x+1
2 bpi+

x [1− bpi].
It is useful to calculate the critical belief p∗ (x), that is the minimal value

of bpi that is necessary for an individual to participate in the revolutionary
attempt. If we set p∗ (x) = 2x

1+x , it is easily observed that U(1) ≥ U(0) iffbpi ≥ p∗ (x).

10.750.50.250

1

0.75

0.5

0.25

0

p*p*

Threshold p∗(x)

At equilibrium, bpi is independent of i, and it coincides with the actual
probability of a successful revolution. Thus, for every x ∈ [0, 1] the game
has three symmetric Nash equilibria (where σi ∈ ∆({0, 1}) denotes player
i’s mixed strategy):2

1. σ∗i = {1, 0} ∀i ∈ [0, 1]

2. σ∗i = {0, 1}∀i ∈ [0, 1]

3. σ∗i = (
2x
1+x , 1−

2x
1+x) ∀i ∈ [0, 1]

2As usual, the mixed equilibrium is rather arbitrary and dynamically unstable. Yet,
at this point we do not rule out mixed or asymmetric equilibria.
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These equilibria are easy to describe. Revolution will succeed in equi-

librium if bpi ≥ p∗ (x), that is, if the subjective belief of each agent about

the proportion of individuals who would participate in the coup, bpi, exceeds
the critical belief p∗ (x). The revolution would fail otherwise. Simply put,

if everyone believes that the revolution is likely to succeed, it will, and if

everyone believes that the revolution is unlikely to succeed, it won’t. This

begs the question, however, of how do individuals form their beliefs.

3 Where Do Expectations Come From?

Our approach to the belief formation question is history- and context-dependent.

Specifically, we assume that games of the type Gx above are being played

over and over again, by different populations [0, 1], in different countries,

at different times, and for different values of x. Yet, the history of simi-

lar games played in the past, which is assumed to be common knowledge,

determines the beliefs bpi of the individuals in question.
More concretely, we assume that time is discrete and that the game Gx

is played in every period by a new generation of players. We further assume

that at the beginning of each period t nature selects a value for xt in an

i.i.d. manner, according to a known discrete distribution. For simplicity, we

assume that the possible values for x are only {0, 12 , 1}. Thus the process is
determined by a probability vector (p0, p 1

2
, p1) where Pr(xt = α) = pα for

α ∈ {0, 12 , 1}.
In each period, all the players of the current generation have a common

memory of all the games that have been played in the past. Before playing,

they observe the current state of the world and form an expectation on the

probability of a success that is based on the similarity between the current

state of the world and the state of the world in previous games that ended,

respectively, with a success or a failure.

In particular, denoting by St the set of (indices of) past games that ended

with a success and with Ft the set of (indices of) past games that ended in
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a failure, we assume that for every i and and every t ≥ 0:

bpit (x1, x2, ...xt) = bpt (x1, x2, ...xt) =
X
k∈St

s+ (xk, xt)X
k∈St

s+ (xk, xt) +
X
k∈Ft

s− (xk, xt)
(2)

where s+ (xk, xt) is a function that measures the degree of support that a

success in a game where the state of the world was xk brings to the possibility

that there is a success in the game being currently played and s− (xk, xt)

measures the degree of support that a failure in a game where the state of

the world was xk leads to the possibility that there is a failure in the game

being currently played. (We normalize the "degree of support" in such a way

that a past success only lends support to a prediction of a future success,

and a past failure — to a future failure.)

The formula (2) is not well-defined for the first period, t = 1. Also, it

allows bpt (·) to be 0 or 1, if history consists of failures alone, or of successes
alone, respectively. We find such extreme beliefs unwarranted. Hence we

use Equation (2) only when history contains both successes and failures.

Formally, we assume that t ≥ 3, and that history contains at least one

success and at least one failure, so that bpt (·) ∈ (0, 1).
Possible functional forms for s+ (xk, xt) and for s− (xk, xt) are

s+ (xk, xt) = 1 + (xk − xt) (3)

s− (xk, xt) = 1− (xk − xt) (4)

Observe that the denominator of bpt (·) doesn’t vanish for any xt ∈ [0, 1]
because

X
k∈St

s+ (xk, xt) and
X
k∈Ft

s− (xk, xt) are both nonnegative and cannot

be simultaneously equal to zero because the first one can be zero only for

xt = 1 while the second one can be zero only for xt = 0.

The interpretation of these formulae is as follows. If xt = xk, the current

game t is practically identical to the game that was played in period k in
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the past. In this case, the degree of support is normalized to 1: whatever

happened in period k (success or failure) lends empirical support to the

belief that it is going to occur again in period t.

Assume, now, that xt > xk. In this case the game played in period k is

similar, but not identical to, the game played in period t. The similarity is

smaller than in the case xt = xk, because now (period t) people have a lower

incentive to rebel than in the past (period k), since the status quo is more

agreeable. Suppose that in period k the revolution succeeded. An individual

is expected to reason as follows, "Well, in period k, when people were hungry

and had little to lose, they rebelled. But it is still possible that today, when

things are better, they won’t. Hence, the success of the revolution in period

k does lend some support to the assumption that people would rebel today,

but this support is lower than it would be if the situations were identical."

This is captured by the function s+ (xk, xt) = 1+ (xk − xt) = 1− (xt− xk).

The bigger is the difference xt−xk > 0, the lower is the support that one gets
for a successful revolution in period t from a successful revolution in period

k. In the extreme case in which xt = 1 and xk = 0, a revolution in period

k (when people had nothing to lose) lends no support to the prediction of a

successful revolution in period t (when people have nothing to gain).

Next suppose that the revolution in period k failed (retaining the as-

sumption xt > xk). In this case there is no support for a prediction of

a success, but there is support for a prediction of a failure. Past failures

make future failures more likely. But to what degree? Here the function

s− (xk, xt) = 1 − (xk − xt) = 1 + (xt − xk) is larger than 1, that is, larger

than in the case in which the game of period k were identical to the game

in period t. This assumption is supposed to reflect the following reasoning,

"The revolution in period t is unlikely to succeed. Even in period k, when

people were hungrier, the revolution failed. Why would it succeed now,

when the status quo is better?"

Finally, if xt < xk the logic is reversed: a success in period k lends
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support greater than 1 to a success in period t, because in period t, a-priori,

there is a stronger motivation to rebel, and a failure in period k lends support

lower than 1 for a failure in period t for the same reason.

Observe that if the same game is repeatedly played over and over again,

that is, if xk = xt for every k, then the expected probability of a success

is simply the observed relative frequency of success in the past. Hence, our

belief formation process can be viewed as generalizing empirical frequencies

(as in fictitious games, Robinson (1951)) to the case in which the game that

is played is not identical to past games, but only similar to them.

The following notation may prove useful. Let NS
t be the cardinality of

St, and NF
t — the cardinality of Ft. Equation (2) can be written as

bpt (x1, x2, ...xt) =
NS −NSxt +

X
k∈St

xk

NS +NF + (NF −NS)xt +
X
k∈St

xk −
X
k∈Ft

xk

It seems natural that the expected probability of a successful revolution,bpt, be a monotonically decreasing function of the well-being at the status
quo, xt. Indeed,

∂bpt (·)
∂xt

=

+NS

⎛⎝X
k∈Ft

xk − 2NF

⎞⎠−NF
X
k∈St

xk

⎡⎣NS +NF + (NF −NS)xt +
X
k∈St

xk −
X
k∈Ft

xk

⎤⎦2
< 0 (5)

(The last inequality holds because the numerator is the sum of two negative

terms).

4 The Dynamic Process

We now wish to study the dynamic process in which at every stage t ≥ 1
xt is drawn from {0, 12 , 1} according to probabilities (p0, p 12 , p1), beliefs are
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formed in accordance with equation (2), and an equilibrium in Gxt is chosen

by the beliefs bpt(·).
Under our assumptions, for almost every history we can predict the

outcome of the game by looking at a graph representing the two curves

p∗(xt) (increasing in xt) and bpt(·) (decreasing in xt). Note that the two

curves intersect exactly once in [0, 1] because their difference bpt(·) − p∗(xt)

is continuous, strictly decreasing, takes a nonnegative value at zero and a

non-positive value at one. Let αt denote the value such that p∗(αt) = bpt(αt).
If the current value xt is to the left of the intersection point, that is, xt <

αt, all players’ expectation bpt(·) will be above the critical belief p∗(xt), and
they will therefore all play 1, resulting in a successful revolution. If, however,

the current xt is to the right of the intersection point, that is, xt > αt, then

all players will play 0 and there will be a failure with probability 1. Ifbpt(·) = p∗(xt), namely, xt = αt, then all individuals are indifferent between

playing 0 and playing 1. For simplicity we assume that they break ties in

favor of the status quo and choose 0. Observe that this is the only case in

which we assume that the equilibrium is symmetric. For other values of xt

symmetry is a result of optimization.3

Next, we observe that a state of the process is fully summarized by a

matrix of relative frequencies

Rt =

x = 0 x = 1
2 x = 1

1 rt,10 rt,1 1
2

rt,11

0 rt,00 rt,0 1
2

rt,01

where rt,ij is the relative frequency, up to time t, of periods in which the

game was Gj and all players played i. We are interested in the limit of Rt

as t→∞.
3Other assumptions are possible, allowing players to select different strategies, and/or

to play mixed strategies. Note that in the latter case one has to assume that the law of
large numbers holds (see Judd (1985)). The main point of this paper does not depend on
these assumptions.
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Given our assumption that t ≥ 3, and that history contains at least

one success and at least one failure, bpt ∈ (0, 1), which in turn implies that
rt,00 = rt,11 = 0 for all t. Observe that the relative frequencies of the

columns are governed only by the selection of x, and are independent of the

players’ behavior. Hence the only candidates for limit frequencies can be

the following matrices:

L1 =

x = 0 x = 1
2 x = 1

1 p0 p 1
2

0

0 0 0 p1

L2 =

x = 0 x = 1
2 x = 1

1 p0 0 0

0 0 p 1
2

p1

L3 =

x = 0 x = 1
2 x = 1

1 p0 wp 1
2

0

0 0 (1− w) p 1
2

p1

for w ∈ (0, 1).
We can finally present our main result.

Theorem 1 For every (p0, p 1
2
, p1), Rt converges to L1 or to L2 with prob-

ability 1. For an open and convex set of vectors (p0, p 1
2
, p1), containing

(13 ,
1
3 ,
1
3), there is a positive probability that Rt converges to L1, and also a

positive probability that Rt converges to L2.

The proof is relegated to an appendix.

The theorem states that games G 1
2
, which are partly similar to games G0

but also to games G1, will eventually be played either like G0 or like G1 with

probability 1. That is, history will determine the outcome of the non-trivial

games: either they all result, in the limit, in successful revolutions (if they

end up being played like G0), or they all result in failed ones (if they end

up being played like G1). The main point of the theorem is its second part,

which states that the limit distribution of Rt cannot be computed a-priori.
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That is, the fundamentals of the game and of the dynamic process do not

suffice for a unique determination of the limit behavior in the non-trivial

games. The random process generating the sequence xt will determine the

results of the games G 1
2
. Specifically, if the process starts with a large

proportion of xt = 0, then for xt = 1
2 most similar games will be found to

have resulted in a successful revolution, and therefore the game at stage t will

also end in success. This will establish an equilibrium at which revolutions

succeed in games G 1
2
. Conversely, if the process starts with many draws of

xt = 1, every new game G 1
2
will be considered similar to games in which

revolutions failed, and will therefore also result in a failed revolution.

5 Appendix: Proof of the Theorem

We have observed that the behavior of the process depends on whetherbpt(x1, ..., 12) is above or below p∗t (
1
2) =

2
3 .

Recall that

bpt (x1, x2, ...xt) =
X
k∈St

s+ (xk, xt)X
k∈St

s+ (xk, xt) +
X
k∈Ft

s− (xk, xt)

We simplify notation by defining

At =
X
k∈St

s+
µ
xk,

1

2

¶
(6)

Bt =
X
k∈Ft

s−
µ
xk,

1

2

¶
(7)

c = p∗t (
1

2
) =

2

3
(8)

bpt(x1, ..., 1
2
) =

At

At +Bt
(9)

zt = At − cBt − cAt (10)
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so that

bpt(x1, ..., 1
2
) > c⇔ At

At +Bt
> c⇔ (11)

At − cBt − cAt > 0⇔ zt > 0 (12)

Suppose we start from zt > 0.

Then,

• with probability p0 the next draw will be 0 , there will be a success and
zt will change (increase) by (1− c) (At+1 −At) = (1− c)

¡
1 +

¡
0− 1

2

¢¢
=

(1− c) 12 = +
1
6

• with probability p 1
2
the next draw will be 1

2 , there will be a success

and zt will change (increase) by (1− c) (At+1 −At) = (1− c) 1 = +1
3

• with probability p1 the next draw will be 1 , there will be a failure and
and zt will change (decrease) by −c (Bt+1 −Bt) = −c

¡
1−

¡
1− 1

2

¢¢
=

− c
2 = −

1
3 .

For zt > 0

Prob. zt+1 − zt
p0

1
6

p 1
2

1
3

p1 −13

(∗)

Similarly, if we start from zt ≤ 0 what will happen is that:

• with probability p0 the next draw will be 0 , there will be a success and
zt will change (increase) by (1− c) (At+1 −At) = (1− c)

¡
1 +

¡
0− 1

2

¢¢
=

(1− c) 12 = +
1
6

• with probability p 1
2
the next draw will be 12 , there will be a failure and

zt will change (increase) by −c (Bt+1 −Bt) = −c (1) = −23

• with probability p1 the next draw will be 1 , there will be a failure and
and zt will change (decrease) by −c (Bt+1 −Bt) = −c

¡
1−

¡
1− 1

2

¢¢
=

− c
2 = −

1
3 .
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For zt ≤ 0

Prob. zt+1 − zt
p0

1
6

p 1
2

−23
p1 −13

(∗∗)

We conclude that zt is a Markov process, which, for non-negative values

is governed by (∗), and for negative ones — by (∗∗).
To establish convergence, we wish to show that, with probability 1, zt

ends up being always positive or always negative from some point on. To

see that this is the case, we note that for every (p0, p 1
2
, p1), (i) the process

(∗) has a positive drift, or (ii) the process (∗∗) has a negative drift, or both.
If (i) holds but not (ii), then zt will be always positive form some point on

with probability 1. Conversely, it will be always negative (from some point

on with probability 1) if (ii) holds but not (i). We are left with the case in

which both (i) and (ii) hold. In this case, starting with any positive value

of zt, there is a positive probability (independent of t) that zt will never be

non-positive, and vice versa for negative values of zt. Hence the probability

of switching infinitely many times between positive and negative values is

zero.

To establish convergence, it remains to note that if, for some T , for all

t ≥ T we have zt ≥ 0, then Rt converges to L1, whereas if, for some T , for

all t ≥ T we have zt < 0, then Rt converges to L2.

Finally, we observe that both (i) and (ii) hold when p0 + 2p 1
2
> 2p1

and p0 − 4p 1
2
< 2p1. This defines a convex and non-empty set of vectors

(p0, p 1
2
, p1), of which (13 ,

1
3 ,
1
3) is a member. ¤
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