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Model:
Y = α+ βS + ε

where S is a dummy indicating college attendance (or some other school
attainment index).

Two issues:

1. 1. schooling choice is endogenous, likely correlated with individual unob-
served characteristics

2. marginal returns to schooling may vary across individuals, with sorting
into schooling by those with highest marginal returns

The untreated and treated outcomes (wages) are

Y0 = µ0(X) + U0

Y1 = µ1(X) + U1

where µ0(X) = E(Y0 | X = x) and µ1(X) = E(Y1 | X = x). Return to schooling
is

Y1 − Y0 = β = µ1(X)− µ0(X) + U1 + U0

The average treatment effect of schooling conditional on X = x is

β̄(x) = E(β | X = x, S = 1) = β̄(x) + E(U1 − U0 | X = x, S = 1)
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Schooling decision:

Returns : Is = µs(Z)− V

Decision : S = 1 if Is ≥ 0, S = 0 otherwise

(X,Z) is observed, but not (U0, U1, V ).which we assume to be independent of

(X,Z).

Let P (z) = Pr(S = 1 | Z = z) = FV (µs(z)), which is the propensity score.
Define Us = FV (V ), which is uniformly distributed by construction. Different
values of Us correspond to different quantiles of V . Then we can write S = 1 if
P (Z) ≥ Us.

The marginal treatment (MTE) is defined as

MTE(x, us) = E((β | X = x, Us = us)

Tracing out the MTE over us shows how the returns to schooling vary with
different quantiles of the unobserved component of the index of the desire to
enroll in schooling (i.e. the mean return to schooling of those at the point of
indifference between going and not going to school).
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We now show

MTE(x, p) =
∂E(Y | X = x, P (Z) = p)

∂p

Proof:
Observed earnings are

Y = SY1 + (1− S)Y0 = µ0(X) + [µ1(X)− µ0(X)]S + U0 + S(U1 − U0)

Then

E(Y | X = x, P (Z) = p) = E(Y0 | X = x, P (Z) = p)+pE(Y1−Y0 | X = x, S = 1, P (Z) = p)

Using the rule for selecting into schooling, this can be rewritten

E(Y | X = x, P (Z) = p)

= µ0(x) + p[µ1(x)− µ0(x)] +

∫ ∞
−∞

∫ p

0

(u1 − u0)f(u1 − u0 | X = x, Us = us)dusd(u1 − u0)

Recalling that MTE(x, us) = E((β | X = x, Us = us),we can simplify the
previous expression as

E(Y | X = x, P (Z) = p) = µ0(x) +

∫ p

0

MTE(x, us)dus

Note: To confirm this, substitute the expression for the MTE into the inte-
gral above and remember that β = µ1(X)−µ0(X)+U1+U0.Writing out terms
will yield the long expression for E(Y | X = x, P (Z) = p) given before.
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Using

E(Y | X = x, P (Z) = p) = µ0(x) +

∫ p

0

MTE(x, us)dus

we differentiate this expression with respect to p, which yields

∂E(Y | X = x, P (Z) = p)

∂p
= MTE(x, p)

Interpretation: People with high P (Z) [propensity to get schoooling] iden-
tify the return for those with a high value of Us values. Those with low values
of Us are already in schooling for that P (Z) so are not affected by the marginal
change in P (Z). Thus what we identify are those persons (given by the quantile
of the unobserved component of the desire to go to school, Us) who are induced
into schooling by a marginal change in P (Z).

Policy relevant treatment effect (PRTE):

PRTE =
E(Y | Alternative Policy)− E(Y | Baseline Policy)

E(S | Alternative Policy)− E(S | Baseline Policy)

Interpretation: Normalised effect of a change from a baseline policy to an
alternative, and this depend on the alternative being considered. PRTE maps
from the proposed policy change (corresponding to some distribution of P∗) to
the resulting per person change in outcomes. In general, this will differ from the
change induced by an instrument (used for IV estimation) unless the instrument
and policy change coincide.
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Application to Returns to Schooling

Authors use linear in parameters model: µ0(X) = Xδ0, µ1(X) = Xδ1 and
µs(Z) = Zγ. In this case

E(Y | X = x, P (Z) = p) = xδ0 + px | δ1 − δ0 | +K(p)

whereK(p) = E(U1−U0 | S = 1, P (Z) = p) can be estimated non-parameterically
as a polynomial.

Test of the null hypothesis there is no selection on gains: This hypothesis says
that the MTE is constant in us. To do this, we specify K(p) as a polynomial
in P (P can be estimated using a Probit or Logit) and then test whether the
coeffi cients on the polynomial terms of order higher than one are jointly equal
to zero.

Outcome, regressors and instruments in Table 2, p. 2763

Table 3: First stage estimates of schooling choice

Table 4:

1. Panel A tests and rejects (mostly) that there is no selection on gains.

2. Panel B shows that the LATE’s estimated over different ranges of Us often
differ significantly, indicating the potential importance of using PRTE.

Figure 4: MTE estimates

1. Large positive and statistically significant gains from schooling for low
values of Us and no significant returns to schooling for high Us.

2. Individuals with low values of Us are those with unobserved characteristics
that make them more likely to be in schooling. Thus theMTE estimates
show positive selection on gains, and in this (narrow) sense an "effi cient"
allocation.
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