Potential Outcomes

- A "treatment" describes one of two states
- The "treatment status" for individual i is denoted by D_{i} which takes values of zero or one.
- Each individual has two counterfactual values for the outcome of interest
- $Y_{i 0}$ is the outcome without treatment
- $Y_{i 1}$ is the outcome with treatment
- The observed outcome is $Y_{i}=D_{i} Y_{i 1}+\left(1-D_{i}\right) Y_{i 0}$
- Fisher (1951), Roy (1951), Rubin-Holland causal model

The Treatment Effect

- The effect of the treatment on individual i is $\Delta_{i}=Y_{i 1}-Y_{i 0}$
- But Δ_{i} is not directly observed!
- We might still be able to identify features of the distribution of Δ_{i} such as its moments or quantiles
- One can view the evaluation problem as one of missing data.

Parameters of Interest

- Average treatment effect (ATE): $E\left(\Delta_{i}\right)$.
- Average treatment effect on the treated (ATET):

$$
E\left(\Delta_{i} \mid D_{i}=1\right) .
$$

- Average treatment effect on the untreated (ATEU): $E\left(\Delta_{i} \mid D_{i}=0\right)$.
- Notice that $A T E=\operatorname{Pr}\left(D_{i}=1\right)$ ATET $+\operatorname{Pr}\left(D_{i}=0\right)$ ATEU.
- Conditional versions: $\operatorname{ATE}(x)=E\left(\Delta_{i} \mid X_{i}=x\right), \operatorname{ATET}(x)=$ $E\left(\Delta_{i} \mid D_{i}=1, X_{i}=x\right)$ and $\operatorname{ATEU}(x)=E\left(\Delta_{i} \mid D_{i}=0, X_{i}=x\right)$

Other Parameters of Interest

- Proportion of people benefiting from the program:

$$
\operatorname{Pr}\left(\Delta_{i}>0 \mid D_{i}=1\right)
$$

- Distribution of treatment effects:

$$
F\left(\Delta_{i} \mid D_{i}=1\right)
$$

- Selected quantile

$$
\inf \left\{\Delta_{i}: F\left(\Delta_{i} \mid D_{i}=1\right)>q\right\}
$$

Main Identification Issues

The main difficulties here are:

- The effect Δ_{i} is (potentially) heterogenous. This implies that the various parameters may differ.
- The selection into treatment may depend on both $Y_{i 1}$ and $Y_{i 0}$ and consequently on the gains from the treatment (e.g., Roy model). This would render D_{i} endogenous.

Evaluation estimators are designed around assumptions that allow us to identify some feature of the distribution of Δ_{i}.

Roy Model

For example, let D_{i} denote one of two occupations chosen by person i (e.g., hunter or fisherman) and $Y_{i 0}, Y_{i 1}$ are the wages in each occupation.

- Roy (1951) postulates that

$$
D_{i}=1\left[Y_{i 1}>Y_{i 0}\right]
$$

- A generalized Roy model has

$$
D_{i}=1\left[Y_{i 1}>Y_{i 0}+C_{i}\right]
$$

where C_{i} is the direct cost of choosing 1 and is potentially heterogenous.

- Call it the extended Roy model if $C_{i}=C$ is constant.

Roy Model

- Re-write the model as

$$
Y_{i d}=\mu_{d}+U_{d}, \quad d=0,1
$$

where $\mu_{d}=E\left(Y_{i d}\right)$ and $U_{d i}=Y_{i d}-\mu_{d}$.

- When covariates $X_{i}=x$ are present, let $\mu_{d} \equiv \mu_{d}(x)=$ $E\left(Y_{i d} \mid X_{i}=x\right)$.
- $A T E=E\left(\Delta_{i}\right)=E\left(\mu_{1}-\mu_{0}+U_{1 i}-U_{0 i}\right)=\mu_{1}-\mu_{0}$
- $A T E T=E\left(\Delta_{i} \mid D_{i}=1\right)=A T E+E\left(U_{1 i}-U_{0 i} \mid D_{i}=1\right)$

At this point it is worth representing outcomes and treatments as

$$
\begin{aligned}
Y_{i} & =D_{i} Y_{i 1}+\left(1-D_{i}\right) Y_{i 0} \\
& =Y_{i 0}+D_{i}\left(Y_{i 1}-Y_{i 0}\right) \\
& =\mu_{0}+\left(\mu_{1}-\mu_{0}+U_{1 i}-U_{0 i}\right) D_{i}+U_{0 i} \\
& =\alpha+\Delta_{i} D_{i}+\epsilon_{i}
\end{aligned}
$$

where $\alpha=\mu_{0}, \Delta_{i}=\mu_{1}-\mu_{0}+U_{1 i}-U_{0 i}$ and $\epsilon_{i}=U_{0 i}$.
Let $\bar{\Delta}=\mu_{1}-\mu_{0}(=A T E)$, and $v_{i}=\Delta_{i}-\bar{\Delta}\left(=U_{1 i}-U_{0 i}\right)$. (What is the ATET?)

This is a linear regression with a random coefficient.

Three Cases

1. The coefficient on D is fixed (given X_{i}) and is the same for everyone. This means that $U_{1 i}=U_{0 i}$ for every $i \Rightarrow \Delta_{i}=\bar{\Delta}$ for every i. (ATE = ATET.)
2. The coefficient on D is random (given X), but $U_{1 i}-U_{0 i}$ does not predict program participation.

$$
\operatorname{Pr}\left(D_{i}=1 \mid U_{1 i}-U_{0 i}\right)=\operatorname{Pr}\left(D_{i}=1\right) \Rightarrow E\left(U_{1 i}-U_{0 i} \mid D_{i}=1\right)=0
$$

There is heterogeneity ($v_{i} \neq 0$), but it is not acted upon ex ante. (ATE = ATET.)
3. The coefficient on D_{i} is random (given X_{i}) and $U_{1 i}-U_{0 i}$ predicts program participation: $E\left(U_{1 i}-U_{0 i} \mid D_{i}=1\right) \neq 0$. (Roy Model.)

OLS

A natural impulse is to estimate the effect of D_{i} on Y_{i} via OLS. What does one obtain? Let $\left\{\left(Y_{i}, D_{i}\right) ; i=1, \ldots, N\right\}$ denote an iid sample.

$$
\hat{\beta}=\frac{\frac{1}{N} \sum_{i=1}^{N} Y_{i} D_{i}-\frac{1}{N} \sum_{i=1}^{N} Y_{i} \frac{1}{N} \sum_{i=1}^{N} D_{i}}{\frac{1}{N} \sum_{i=1}^{N} D_{i}^{2}-\left(\frac{1}{N} \sum_{i=1}^{N} D_{i}\right)^{2}}
$$

Let $\beta_{O L S}$ denote the probability limit of β. For any $\epsilon>0$,

$$
\operatorname{Pr}\left(\left|\hat{\beta}-\beta_{O L S}\right|>\epsilon\right) \rightarrow 0
$$

as $N \rightarrow \infty$.

OLS

Because

$$
\begin{aligned}
E\left(D_{i} Y_{i}\right) & =E\left(Y_{i} \mid D_{i}=1\right) \operatorname{Pr}\left(D_{i}=1\right)=E\left(Y_{i} \mid D_{i}=1\right) E\left(D_{i}\right) \\
E\left(Y_{i}\right) & =E\left(Y_{i} \mid D_{i}=1\right) \operatorname{Pr}\left(D_{i}=1\right)+E\left(Y_{i} \mid D_{i}=0\right) \operatorname{Pr}\left(D_{i}=0\right)= \\
& =E\left(Y_{i} \mid D_{i}=1\right) E\left(D_{i}\right)+E\left(Y_{i} \mid D_{i}=0\right)\left(1-E\left(D_{i}\right)\right)
\end{aligned}
$$

it is easy to show that

$$
\begin{aligned}
\beta_{O L S} & =E\left(Y_{i 1} \mid D_{i}=1\right)-E\left(Y_{i 0} \mid D_{i}=0\right) \\
& =A T E T+E\left(Y_{i 0} \mid D_{i}=1\right)-E\left(Y_{i 0} \mid D_{i}=0\right)
\end{aligned}
$$

The second term is a selection effect. It still exists even if there is no impact heterogeneity (i.e. $v_{i}=0$).

Potential Solutions to the Causal Inference Problem

A cadre of potential solutions to the evaluation of the problem is offered in the literature. Each suits different assumption, data and purpose scenarios:

1. Matching
2. Instrumental variables
3. $\mathrm{DiD}, \mathrm{RDD}$ and quasi-natural experiments
4. Randomised control trials
5. Estimation of a structural economic model
(1-4) consider cases where treatment assignment D_{i} is (in some sense) independent of potential outcomes $Y_{i 0}$ and $Y_{i 1}$ (once conditioned on the relevant covariates). (5) seeks to model the selection into treatment.

Matching

- Matching estimators pair treated individuals $\left(D_{i}=1\right)$ with observably similarly untreated individuals $\left(D_{i}=0\right)$.
- To do that, we assume the Conditional Independence Assumption (CIA):

$$
\left.\left(Y_{i 1}, Y_{i 0}\right) \Perp D_{i} \mid X_{i} \quad \text { (i.e., } \operatorname{Pr}\left[D_{i} \mid X_{i}, Y_{i 0}, Y_{i 1}\right]=\operatorname{Pr}\left[D_{i} \mid X_{i}\right]\right)
$$

- To justify this assumption, individuals cannot select into the program based on anticipated treatment impact.

Matching

Other assumptions in matching estimators are:

- Common Support Assumption: $0<\operatorname{Pr}\left(D_{i}=1 \mid X_{i}\right)<1$ for any X_{i}. There is no x in the support of the covariates such that $D_{i}=0$ or 1 .
- Stable Unit Treatment Value Assumption (SUTVA): There are no spillovers. D_{i} has no impact on individual $j \neq i$.

This rules out general equilibrium effects or social interactions.

Matching

- The CIA implies that

$$
F\left(Y_{i d} \mid D_{i}, X_{i}\right)=F\left(Y_{i d} \mid X_{i}\right) \Rightarrow E\left(Y_{i d} \mid D_{i}, X_{i}\right)=E\left(Y_{i d} \mid X_{i}\right)
$$

for $d=0,1$.

- This implies that $\operatorname{ATE}\left(X_{i}\right)=\operatorname{ATET}\left(X_{i}\right)=\operatorname{ATEU}\left(X_{i}\right) \ldots$
- . . . but does not imply ATE $=$ ATET $=$ ATEU if $f\left(X_{i} \mid D_{i}=1\right) \neq f\left(X_{i}\right)$.
- $\operatorname{ATET}=E\left(\operatorname{ATET}\left(X_{i}\right) \mid D_{i}=1\right)$ and $\operatorname{ATE}=E\left(\operatorname{ATE}\left(X_{i}\right)\right)$ by LIE.

Propensity Score Matching

- One immediate problem in implement a matching estimator is how to deal with high dimensional X_{i}.
- A typical dimension reducing strategy is to use Propensity Score Matching. The propensity score is defined as

$$
P(x)=\operatorname{Pr}\left(D_{i}=1 \mid X_{i}=x\right)
$$

for all x in the support of X_{i}.

- Theorem (Rosenbaum and Rubin):

$$
C I A \Rightarrow\left(Y_{i 1}, Y_{i 0}\right) \Perp D_{i} \mid P\left(X_{i}\right)
$$

Propensity Score Matching

- Proof:

$$
\begin{aligned}
& \operatorname{Pr}\left[D_{i}=1 \mid Y_{i 1}, Y_{i 0}, P\left(X_{i}\right)\right] \\
= & E\left\{\operatorname{Pr}\left[D_{i}=1 \mid Y_{i 1}, Y_{i 0}, X_{i}\right] Y_{i 1}, Y_{i 0}, P\left(X_{i}\right)\right\} \quad \text { (by LIE) } \\
= & E\left\{\operatorname{Pr}\left[D_{i}=1 \mid X_{i}\right] \mid Y_{i 1}, Y_{i 0}, P\left(X_{i}\right)\right\} \quad \text { (by CIA) } \\
= & E\left\{P\left(X_{i}\right) \mid Y_{i 1}, Y_{i 0}, P\left(X_{i}\right)\right\}=P\left(X_{i}\right)=E\left\{P\left(X_{i}\right) \mid P\left(X_{i}\right)\right\} \\
= & E\left\{\operatorname{Pr}\left[D_{i}=1 \mid X_{j}\right] \mid P\left(X_{i}\right)\right\} \quad \text { (by LIE) } \\
= & \operatorname{Pr}\left[D_{i}=1 \mid P\left(X_{i}\right)\right] \quad
\end{aligned}
$$

- So, we can reduce the problem to a unidimensional one if we know $P(\cdot)$! The catch is that if we do not know it we need to estimate it on a potentially highly dimensional X_{i}. This brings back the curse of dimensionality. (In practice one estimates a parametric propensity score.)

Propensity Score Matching

We can then estimate the $A T E T$ in two steps:

1. Estimate a model of program participation and obtain the propensity score $P\left(x_{i}\right)$ for each person
2. Select matches based on the estimated propensity score:

$$
\widehat{A T E T}=\frac{1}{\sum_{i=1}^{N} d_{i}} \sum_{i: d_{i}=1}\left[y_{i}-\hat{m}_{0}\left(x_{i}\right)\right]
$$

where $\hat{m}_{0}\left(x_{i}\right)$ is an estimator for $E\left[Y_{0 j} \mid P\left(X_{j}\right)=P\left(x_{i}\right), D_{j}=\right.$ 0].

Propensity Score Matching

How does one estimate $\hat{m}_{0}\left(x_{i}\right)$?

Since the propensity score is unidimensional, it is easy to estimate it via kernel methods:

$$
\begin{aligned}
\hat{m}_{0}\left(x_{i}\right) & =\frac{\sum_{j: d_{j}=0} y_{j} \mathcal{K}\left(P\left(x_{i}\right)-P\left(x_{j}\right)\right)}{\sum_{j: d_{j}=0} \mathcal{K}\left(P\left(x_{i}\right)-P\left(x_{j}\right)\right)} \\
& =\frac{\widehat{E}\left\{y_{j} 1\left[D_{j}=0, P\left(X_{i}\right)=P\left(X_{j}\right)\right]\right\}}{\widehat{P}\left(D_{j}=0, P\left(X_{i}\right)=P\left(X_{j}\right)\right)}
\end{aligned}
$$

Propensity Score Matching

1. Nearest-neighbor matching:

$$
\mathcal{K}\left(P\left(x_{i}\right)-P\left(x_{j}\right)\right)=1\left[j=\operatorname{argmin}_{k \neq i}\left|P\left(x_{i}\right)-P\left(x_{k}\right)\right|\right] .
$$

2. Caliper matching: for some positive h

$$
\mathcal{K}\left(P\left(x_{i}\right)-P\left(x_{j}\right)\right)=1\left[\left|P\left(x_{i}\right)-P\left(x_{j}\right)\right|<h\right] .
$$

3. Kernel matching: $\mathcal{K}(u)$ is the density of a symmetric distribution such that $\mathcal{K}(u)>0, \int \mathcal{K}(u) d u=1$, $\mathcal{K}(u)=\mathcal{K}(-u)$. The variance of this distribution controls the weight given to observations with similar propensity scores.
4. Local linear matching (Heckman, Ichimura and Todd (1997)).

- Remark: Estimation takes place only over the common support of X. If $P(x)=1$ or $P(x)=0$, this covariate value cannot be used.

Propensity Score Matching

To estimate ATE, notice that

$$
\begin{aligned}
& E\left[\frac{Y_{i}\left(D_{i}-P_{i}\right)}{P_{i}\left(1-P_{i}\right)}\right] \\
= & E\left[\frac{E\left(Y_{i} \mid D_{i}=1, P_{i}\right) P_{i}\left(1-P_{i}\right)+E\left(Y_{i} \mid D_{i}=0, P_{i}\right)\left(-P_{i}\right)\left(1-P_{i}\right)}{P_{i}\left(1-P_{i}\right)}\right] \\
= & E\left[E\left(Y_{i} \mid D_{i}=1, P_{i}\right)-E\left(Y_{i} \mid D_{i}=0, P_{i}\right)\right] \\
= & \text { ATE }
\end{aligned}
$$

This suggests using

$$
\begin{aligned}
\widehat{A T E} & =\frac{1}{N} \sum_{i=1}^{N} \frac{y_{i}\left(d_{i}-\hat{p}_{i}\right)}{\hat{p}_{i}\left(1-\hat{p}_{i}\right)} \\
& =\frac{1}{N} \sum_{i=1}^{N} \frac{y_{i} d_{i}}{\hat{p}_{i}}-\frac{1}{N} \sum_{i=1}^{N} \frac{y_{i}\left(1-d_{i}\right)}{1-\hat{p}_{i}}
\end{aligned}
$$

