
Potential Outcomes

I A “treatment” describes one of two states

I The “treatment status” for individual i is denoted by Di
which takes values of zero or one.

I Each individual has two counterfactual values for the
outcome of interest

- Yi0 is the outcome without treatment
- Yi1 is the outcome with treatment

I The observed outcome is Yi = DiYi1 + (1− Di)Yi0

I Fisher (1951), Roy (1951), Rubin-Holland causal model
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The Treatment Effect

I The effect of the treatment on individual i is ∆i = Yi1 − Yi0

I But ∆i is not directly observed!

I We might still be able to identify features of the distribution
of ∆i such as its moments or quantiles

I One can view the evaluation problem as one of missing
data.
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Parameters of Interest

I Average treatment effect (ATE): E(∆i).

I Average treatment effect on the treated (ATET ):
E(∆i |Di = 1).

I Average treatment effect on the untreated (ATEU):
E(∆i |Di = 0).

I Notice that ATE = Pr(Di = 1)ATET + Pr(Di = 0)ATEU.

I Conditional versions: ATE(x) = E(∆i |Xi = x), ATET (x) =
E(∆i |Di = 1,Xi = x) and ATEU(x) = E(∆i |Di = 0,Xi = x)
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Other Parameters of Interest

I Proportion of people benefiting from the program:

Pr(∆i > 0|Di = 1)

I Distribution of treatment effects:

F (∆i |Di = 1)

I Selected quantile

inf{∆i : F (∆i |Di = 1) > q}

Mark Schankerman EC 475: Quantitative Economics



Main Identification Issues

The main difficulties here are:

- The effect ∆i is (potentially) heterogenous. This implies
that the various parameters may differ.

- The selection into treatment may depend on both Yi1 and
Yi0 and consequently on the gains from the treatment
(e.g., Roy model). This would render Di endogenous.

Evaluation estimators are designed around assumptions that
allow us to identify some feature of the distribution of ∆i .
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Roy Model

For example, let Di denote one of two occupations chosen by
person i (e.g., hunter or fisherman) and Yi0,Yi1 are the wages
in each occupation.

I Roy (1951) postulates that

Di = 1[Yi1 > Yi0]

I A generalized Roy model has

Di = 1[Yi1 > Yi0 + Ci ]

where Ci is the direct cost of choosing 1 and is potentially
heterogenous.

I Call it the extended Roy model if Ci = C is constant.
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Roy Model

I Re-write the model as

Yid = µd + Ud , d = 0,1

where µd = E(Yid ) and Udi = Yid − µd .

I When covariates Xi = x are present, let µd ≡ µd (x) =
E(Yid |Xi = x).

I ATE = E(∆i) = E(µ1 − µ0 + U1i − U0i) = µ1 − µ0

I ATET = E(∆i |Di = 1) = ATE + E(U1i − U0i |Di = 1)
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At this point it is worth representing outcomes and treatments
as

Yi = DiYi1 + (1− Di)Yi0

= Yi0 + Di(Yi1 − Yi0)

= µ0 + (µ1 − µ0 + U1i − U0i)Di + U0i

= α + ∆iDi + εi

where α = µ0, ∆i = µ1 − µ0 + U1i − U0i and εi = U0i .

Let ∆ = µ1 − µ0(= ATE), and vi = ∆i −∆(= U1i − U0i). (What
is the ATET?)

This is a linear regression with a random coefficient.
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Three Cases

1. The coefficient on D is fixed (given Xi ) and is the same for
everyone. This means that U1i = U0i for every i ⇒ ∆i = ∆
for every i . (ATE = ATET .)

2. The coefficient on D is random (given X ), but U1i − U0i
does not predict program participation.

Pr(Di = 1|U1i−U0i) = Pr(Di = 1)⇒ E(U1i−U0i |Di = 1) = 0

There is heterogeneity (vi 6= 0), but it is not acted upon ex
ante. (ATE = ATET .)

3. The coefficient on Di is random (given Xi ) and U1i − U0i
predicts program participation: E(U1i − U0i |Di = 1) 6= 0.
(Roy Model.)
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OLS

A natural impulse is to estimate the effect of Di on Yi via OLS.
What does one obtain? Let {(Yi ,Di); i = 1, . . . ,N} denote an iid
sample.

β̂ =
1
N
∑N

i=1 YiDi − 1
N
∑N

i=1 Yi
1
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1
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i=1 D2
i −

(
1
N
∑N

i=1 Di

)2

Let βOLS denote the probability limit of β. For any ε > 0,

Pr(|β̂ − βOLS| > ε)→ 0

as N →∞.
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OLS

Because

E(DiYi) = E(Yi |Di = 1)Pr(Di = 1) = E(Yi |Di = 1)E(Di)

E(Yi) = E(Yi |Di = 1)Pr(Di = 1) + E(Yi |Di = 0)Pr(Di = 0) =

= E(Yi |Di = 1)E(Di) + E(Yi |Di = 0)(1− E(Di))

it is easy to show that

βOLS = E(Yi1|Di = 1)− E(Yi0|Di = 0)

= ATET + E(Yi0|Di = 1)− E(Yi0|Di = 0)

The second term is a selection effect. It still exists even if there
is no impact heterogeneity (i.e. vi = 0).
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Potential Solutions to the Causal Inference Problem

A cadre of potential solutions to the evaluation of the problem is
offered in the literature. Each suits different assumption, data
and purpose scenarios:

1. Matching
2. Instrumental variables
3. DiD, RDD and quasi-natural experiments
4. Randomised control trials
5. Estimation of a structural economic model

(1-4) consider cases where treatment assignment Di is (in
some sense) independent of potential outcomes Yi0 and Yi1
(once conditioned on the relevant covariates). (5) seeks to
model the selection into treatment.
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Matching

I Matching estimators pair treated individuals (Di = 1) with
observably similarly untreated individuals (Di = 0).

I To do that, we assume the Conditional Independence
Assumption (CIA):

(Yi1,Yi0) ⊥⊥ Di |Xi (i.e., Pr [Di |Xi ,Yi0,Yi1] = Pr [Di |Xi ])

I To justify this assumption, individuals cannot select into the
program based on anticipated treatment impact.

Mark Schankerman EC 475: Quantitative Economics



Matching

Other assumptions in matching estimators are:

I Common Support Assumption: 0 < Pr(Di = 1|Xi) < 1 for
any Xi . There is no x in the support of the covariates such
that Di = 0 or 1.

I Stable Unit Treatment Value Assumption (SUTVA): There
are no spillovers. Di has no impact on individual j 6= i .

This rules out general equilibrium effects or social
interactions.
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Matching

I The CIA implies that

F (Yid |Di ,Xi) = F (Yid |Xi)⇒ E(Yid |Di ,Xi) = E(Yid |Xi)

for d = 0,1.

I This implies that ATE(Xi) = ATET (Xi) = ATEU(Xi). . .

I . . . but does not imply ATE = ATET = ATEU if
f (Xi |Di = 1) 6= f (Xi).

I ATET = E(ATET (Xi)|Di = 1) and ATE = E(ATE(Xi)) by
LIE.
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Propensity Score Matching

I One immediate problem in implement a matching
estimator is how to deal with high dimensional Xi .

I A typical dimension reducing strategy is to use Propensity
Score Matching. The propensity score is defined as

P(x) = Pr(Di = 1|Xi = x)

for all x in the support of Xi .

I Theorem (Rosenbaum and Rubin):

CIA⇒ (Yi1,Yi0) ⊥⊥ Di |P(Xi)

Mark Schankerman EC 475: Quantitative Economics



Propensity Score Matching

I Proof:

Pr [Di = 1|Yi1,Yi0,P(Xi)]

= E{Pr [Di = 1|Yi1,Yi0,Xi ]|Yi1,Yi0,P(Xi)} (by LIE)
= E{Pr [Di = 1|Xi ]|Yi1,Yi0,P(Xi)} (by CIA)
= E{P(Xi)|Yi1,Yi0,P(Xi)} = P(Xi) = E{P(Xi)|P(Xi)}
= E{Pr [Di = 1|Xi ]|P(Xi)} (by LIE)
= Pr [Di = 1|P(Xi)]

I So, we can reduce the problem to a unidimensional one if
we know P(·)! The catch is that if we do not know it we
need to estimate it on a potentially highly dimensional Xi .
This brings back the curse of dimensionality. (In practice
one estimates a parametric propensity score.)
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Propensity Score Matching

We can then estimate the ATET in two steps:

1. Estimate a model of program participation and obtain the
propensity score P(xi) for each person

2. Select matches based on the estimated propensity score:

ÂTET =
1∑N

i=1 di

∑
i:di=1

[yi − m̂0(xi)]

where m̂0(xi) is an estimator for E [Y0j |P(Xj) = P(xi), Dj =
0].
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Propensity Score Matching

How does one estimate m̂0(xi)?

Since the propensity score is unidimensional, it is easy to
estimate it via kernel methods:

m̂0(xi) =

∑
j:dj=0 yjK(P(xi)− P(xj))∑
j:dj=0K(P(xi)− P(xj))

=
Ê
{

yj1[Dj = 0,P(Xi) = P(Xj)]
}

P̂(Dj = 0,P(Xi) = P(Xj))
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Propensity Score Matching
1. Nearest-neighbor matching:

K(P(xi)− P(xj)) = 1[j = argmink 6=i |P(xi)− P(xk )|].

2. Caliper matching: for some positive h

K(P(xi)− P(xj)) = 1[|P(xi)− P(xj)| < h].

3. Kernel matching: K(u) is the density of a symmetric
distribution such that K(u) > 0,

∫
K(u)du = 1,

K(u) = K(−u). The variance of this distribution controls
the weight given to observations with similar propensity
scores.

4. Local linear matching (Heckman, Ichimura and Todd
(1997)).

- Remark: Estimation takes place only over the common
support of X . If P(x) = 1 or P(x) = 0, this covariate value
cannot be used.
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Propensity Score Matching
To estimate ATE , notice that

E
[

Yi(Di − Pi)

Pi(1− Pi)

]
= E

[
E(Yi |Di = 1,Pi)Pi(1− Pi) + E(Yi |Di = 0,Pi)(−Pi)(1− Pi)

Pi(1− Pi)

]
= E [E(Yi |Di = 1,Pi)− E(Yi |Di = 0,Pi)]

= ATE

This suggests using

ÂTE =
1
N

N∑
i=1

yi(di − p̂i)

p̂i(1− p̂i)

=
1
N

N∑
i=1

yidi

p̂i
− 1

N

N∑
i=1

yi(1− di)

1− p̂i
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