
The Key Issue with Matching

I If individuals select into treatment based on
unobservables, CIA will fail.

I The simple Roy Model illustrates this well:

Yid = µd (Xi) + Uid , d = 0,1
Di = 1[Yi1 > Yi0]

= 1[Ui1 − Ui0 > µ0(Xi)− µ1(Xi)]

I Those with high U0 relative to U1 (and consequently high
Y0 relative to Y1) will tend not to be treated.

I In this case, it is very possible that Pr [Di |Xi ,Yi0,Yi1]
6= Pr [Di |Xi ] (i.e. CIA fails).
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IV
I Omit X for simplicity and remember the regression

representation:

Yi = α + ∆iDi + U0i = α + ATETDi + ηi

where α = µ0, ηi = (U1i − U0i − E(U1i − U0i |Di = 1))Di
+U0i .

I A “natural” solution would be to look for an Instrumental
Variable Zi and rely on

∆IV =
cov(Yi ,Zi)

cov(Di ,Zi)

I If Zi is binary, we get the Wald estimator:

∆IV =
E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Di |Zi = 1]− E [Di |Zi = 0]
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IV
When does IV estimate ATET?

1. U0i = U1i (⇒ ATET = ATE) and E(U0i |Zi) = E(U0i). Then

E(Yi |Zi = z)

= α + E(Di |Zi = z)ATET + E(U0i |Zi = z)

for z = 0,1.

2. U0i 6= U1i . Then it is necessary that and

E [U0i + {U1i − U0i − E(U1i − U0i |Di = 1)}Di |Zi ]

= E [U0i + {U1i − U0i − E(U1i − U0i |Di = 1)}Di ]

which essentially requires that the IV does not help predict
the gain from treatment.
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IV

I Angrist (AER, 1990) uses draft lottery as instrument for
veteran status. Could be invalid for ATET if

- Firms take into account lottery numbers in hiring
- Workers take actions to avoid draft

I Moffitt (JASA, 1996) explores the validity of cross-section
variation in welfare benefits as an instrument for
participation in job training program

- Could be invalid if anticipated benefits are correlated with
welfare benefits
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LATE
I Imbens and Angrist (ECMA, 1994) show that, even if the

assumptions that would justify the IV for the estimation of
the ATET are not valid, the IV estimator still identifies the
Local Average Treatment Effect (LATE).

I The key assumption is monotonicity. Define the treatment
allocation as a random variable indexed by z ∈ supp(Zi):
Di = Di(z). The monotonicity assumption holds if for any
two values of the instrument z1 6= z2 we have

Di(z1) ≥ Di(z2) for all i or Di(z1) ≤ Di(z2) for all i .

If people are more likely to participate when Zi = z1 then
when Z = z2, then anyone who would participate when
Zi = z1 should also participate when Zi = z2. (Individuals
are either compliers or defiers.)
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LATE

I The other assumption employed by IA requires that ( i ) for
every z ∈ supp(Zi), (Yi1,Yi0,Di(z)) ⊥⊥ Zi and ( ii )
E(Di |Zi = z) be a nontrivial function of z.

I ( i ) is an exclusion restriction: Zi affects the outcomes only
via Di .

I ( ii ) means that the IV is relevant.
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LATE

Then,

E [Yi |Zi = 1]− E [Yi |Zi = 0] =

= E [Di(1)Yi1 + (1− Di(1))Yi0|Zi = 1]− E [Di(0)Yi1 + (1− Di(0))Yi0|Zi = 0]

= E [Di(1)Yi1 + (1− Di(1))Yi0]− E [Di(0)Yi1 + (1− Di(0))Yi0] (by (i))

= E [(Di(1)− Di(0))(Yi1 − Yi0)]

= E [Yi1 − Yi0|Di(1)− Di(0) = 1]Pr(Di(1)− Di(0) = 1)−
E [Yi1 − Yi0|Di(1)− Di(0) = −1]Pr(Di(1)− Di(0) = −1)

The IV estimates a weighted difference of the effect for those
induced into treatment by Z and those induced out of treatment
by Z .

If treatment effects are homogeneous this is the ATE , but in
general it is rather meaningless.

de Paula EC 475: Quantitative Economics



LATE
Under monotonicity though

Pr(Di(1)− Di(0) = −1) = 0

(or Pr(Di(1)− Di(0) = 1) = 0) which then implies that

E [Yi |Zi = 1]− E [Yi |Zi = 0]

= E [Yi1 − Yi0|Di(1)− Di(0) = 1]Pr(Di(1)− Di(0) = 1)

and

Pr(Di(1)− Di(0) = 1)

= Pr(Di(1) = 1 ∩ Di(0) = 0)

= 1− Pr(Di(1) = 0)− Pr(Di(0) = 1)

= Pr(Di(1) = 1)− Pr(Di(0) = 1)
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LATE

I And we obtain that

∆IV = E [Yi1 − Yi0|Di(1)− Di(0) = 1]

I The IV estimator gives the average effect of the treatment
for those induced into treatment by the instrument Z .

I If monotonicity can be justified, IV estimates the effect for a
particular subset of the population (i.e. the compliers).

I This subset depends on the intrument and different
instruments will esitmate different LATEs.
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LATE

I In Angrist (AER, 1990) example, we get the effect of
veteran status for the subset induced to enter the military
by the draft lottery (excluding those who always join or
never join, despite the draft).

I Angrist and Krueger (1994) study the effect of schooling on
earnings using compulsory laws as instrument. This gives
the treatment effect for the subset induced to enter school
by the law (probably the “low level” schooling types).
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Connecting it all: MTE

Consider the potential outcomes representation:

Yi = Yi1Di + Yi0(1− Di)

Yid = µd + Uid , d = 0,1
Di = 1[µD(Zi)− UiD ≥ 0]

where we explicity write how Di depends on Zi .

Assume that shocks are independent of Zi and that UiD is
continuous.
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Connecting it all: MTE

Write the propensity score as P(z) = Pr(Di = 1|Zi = z) and
assume there is full support (0 < Pr(Di = 1|Zi) < 1).

If UiD is continuous, we can assume without loss of generality
that

Di = 1[P(Zi)− UiD ≥ 0],

where UiD ∼ U[0,1].

This is because

FUD (µD(Zi))︸ ︷︷ ︸
=P(Zi )

≥ FUD (UiD)︸ ︷︷ ︸
∼U[0,1]

⇔ µD(Zi) ≥ UiD
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Connecting it all: MTE

Define the conditional treatment effect parameters ATE(P(Zi))
and ATET (P(Zi)) as before (but conditioning now on the
propensity score P(Zi)). (Remember this is equivalent to
conditioning on Zi !)

Since Zi may take more than two values, define LATE(P(z),
P(z ′)) is estimated by

E [Yi |P(Zi) = P(z)]− E [Yi |P(Zi) = P(z ′)]

P(z)− P(z ′)

The monotonicity assumption is hidden in the definition of Di .
(Can you see that?)
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Connecting it all: MTE

Define the Marginal Treatment Effect as

MTE(u) ≡ E(∆i |UDi = u).

1. If UDi = P(z) the person has unobservables that make him
or her indifferent between participating and not
participating.

2. Those with UDi close to zero, unobservables that make
them most inclined to participate. The MTE at low values
give the treatment effect on those people.

3. Those with UDi close to one, unobservables that make
them least inclined to participate. The MTE at low values
give the treatment effect on those people.
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Connecting it all: MTE
Note that

E(Yi |P(Zi) = P(z))

= P(z)E(Yi1|P(Zi) = P(z),Di = 1) + (1− P(z))E(Yi1|P(Zi) = P(z),Di = 0)

= P(z)

∫ P(z)
0 E(Yi1|UDi = u)du

P(z)
+ (1− P(z))

∫ 1
P(z) E(Yi0|UDi = u)du

1− P(z)

and the LATE(P(z),P(z ′)) estimator becomes∫ P(z)
P(z′) E(Yi1|UDi = u)du −

∫ P(z)
P(z′) E(Yi0|UDi = u)du

P(z)− P(z ′)
= E(∆i |P(z ′) ≤ UDi ≤ P(z))

= E(MTE(UDi)|P(z ′) ≤ UDi ≤ P(z))

which is the average treatment effect those that would not
participate if Zi = z ′ but would participate if Zi = z (i.e., the
compliers).
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Connecting it all: MTE

Using similar manipulations, we can show that

ATE =

∫ 1

0
MTE(u)du

ATET =

∫ 1

0
MTE(u)hATET (u)du

LATE(u′,u′′) =

∫ u′′

u′ MTE(s)ds
u′′ − u′

where hATET (u) = 1− FP(Z )(u)/
∫

[1− FP(Z )(t)]dt , a function
that gives more weight to those more inclined to participate.
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Connecting it all: MTE
Heckman and Vytlacil (2005, EMA) show also that

IV =

∫ 1

0
MTE(u)hIV (u)du

OLS =

∫ 1

0
MTE(u)hOLS(u)du

where

hIV (u) = Pr(P(Z ) > u)× E [P(Z )|P(Z ) > u]− E [P(Z )]

Var(P(Z ))

hOLS = 1 +
E [U1|UD = u]h1 − E [U0|UD = u]h0

∆MTE (u)

where h1 = E(P(Z )|P(Z ) > u)/E(P(Z )) and h0 =
E(P(Z )|P(Z ) < u)/E(P(Z )).
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Connecting it all: MTE

If we know the MTE(·), we can reconstruct all of the above
parameters (plus others). How can we do that?

Notice that

MTE(P(z))

= lim
P(z′)→P(z)

LATE(P(z),P(z ′))

= lim
P(z′)→P(z)

E [Yi |P(Zi) = P(z)]− E [Yi |P(Zi) = P(z ′)]

P(z)− P(z ′)

=
∂E [Yi |P(Zi) = P(z)]

∂P(z)

≡ ∆LIV (P(z))
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Connecting it all: MTE

In practice:
1. Estimate the propensity score (parametrically,

semi-parametrically or non-parametrically);
2. Estimate ∂E(Yi |P(Zi) = ·)/∂P(z) non-parametrically (e.g.,

via slope of local linear regression estimate of
E(Yi |P(Zi) = ·)).

3. Evaluating this function for different values of P(z) traces
out the MTE on the support of P(Zi).

4. The different estimands ATET ,ATE and LATE can be
obtained by integrating under different regions of the MTE
function.
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Returns to College, CHV (AER, 2011)

I Object of study: Estimate the returns to college and
analyse the heterogeneity of these returns.

I Data: NLSY 1979
I Outcome variable: log wages
I Conditioning variables (X ): years of experience, cognitive

ability (AFQT), maternal education, cohort dummies, log
average earnings in SMSA, and average unemployment
rate in state.

I Instruments (Z ): Presence of a four year public college in
SMSA at age 14, log average earnings in the SMSA when
17 (opportunity cost), average unemployment in state
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Returns to College, CHV (AER, 2011)
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Returns to College, CHV (AER, 2011)

I Estimate a logit model for college participation on cohort
dummies and polynomial terms of the instruments.

I The probability of college attendance is

P(Z ) =
1

1 + exp(−Z>β)

I Average derivatives are

N−1
∑ ∂P̂(Z )

∂Zj
= N−1

∑[
P̂(Z )(1− P̂(Z ))

∂Z>β̂
∂Zj

]
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Returns to College, CHV (AER, 2011)
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Returns to College, CHV (AER, 2011)

Notice:
1. How the results vary by instrumental variable and
2. How IV is larger than OLS.

de Paula EC 475: Quantitative Economics



Returns to College, CHV (AER, 2011)
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