Dynamic Games:
 Numerical Methods and Applications

Mini Course, Tel Aviv University, Day 1
Prof. Ulrich Doraszelski, University of Pennsylvania

What are Dynamic Games?

- A tool for analyzing dynamic strategic interactions.
- dynamic \rightarrow forward-looking players optimize over time;
- strategic \rightarrow each player recognizes that its actions impact other players.
- Often used to track evolution of oligopolistic industries.
- oligopolistic \rightarrow neither perfectly competitive nor monopolistically competitive.

Dynamics + Strategic Interactions $=$ Dynamic Games

- Combine literature on long-run industry equilibrium (Jovanovic 1982, Hopenhayn 1992, Melitz 2003) with game theory (Tirole 1988, Fudenberg \& Tirole 1991).

Why use Dynamic Games?

- Key findings of empirical literature on industry evolution (Mueller 1986, Dunne, Roberts, \& Samuelson 1988, Davis \& Haltiwanger 1992):
- Entry and exit occur simultaneously.
- Heterogeneity among firms evolves endogenously in response to random occurrences.
- Heterogeneity among firms persists over long stretches of time.

Why use Dynamic Games?

- Game theory revolution in economics: emphasis on analytically tractable models.
- End effects.
- Transitional dynamics.
- Inherently dynamic phenomena.

Agenda

- From dynamic programming to dynamic games.
- Application: Quality ladder model without entry/exit.

From Dynamic Programming. . .

- Time is discrete. The horizon is infinite.
- The state space $\Omega=\{1,2, \ldots, L\}$ is finite.
- The state in period t is $\omega_{t} \in \Omega$. The law of motion is a controlled discrete-time, finite-state, first-order Markov process, where

$$
\operatorname{Pr}\left(\omega_{t+1} \mid \omega_{t}, x_{t}\right)
$$

is the probability that the state transits from ω_{t} to ω_{t+1} if the control is $x_{t} \in D\left(\omega_{t}\right)$ and $D\left(\omega_{t}\right)$ is the nonempty set of feasible controls in state ω_{t}.

- The objective is to maximize the expected NPV of payoffs

$$
E\left\{\sum_{t=0}^{\infty} \beta^{t} \pi\left(\omega_{t}, x_{t}\right)\right\}
$$

where $\beta \in[0,1)$ is the discount factor and $\pi\left(\omega_{t}, x_{t}\right)$ is the per-period payoff in state ω_{t} if the control is x_{t}.

- The value function $V(\omega)$ is the maximum expected NPV of present and future payoffs if the current state is ω. It satisfies the Bellman equation

$$
\begin{equation*}
V(\omega)=\max _{x \in D(\omega)} \pi(\omega, x)+\beta \sum_{\omega^{\prime}=1}^{L} V\left(\omega^{\prime}\right) \operatorname{Pr}\left(\omega^{\prime} \mid \omega, x\right) \tag{1}
\end{equation*}
$$

and the optimal policy function $X(\omega)$ satisfies

$$
X(\omega) \in \arg \max _{x \in D(\omega)} \pi(\omega, x)+\beta \sum_{\omega^{\prime}=1}^{L} V\left(\omega^{\prime}\right) \operatorname{Pr}\left(\omega^{\prime} \mid \omega, x\right)
$$

- The collection of equation (1) for all states $\omega \in \Omega$ defines a system of nonlinear equations. The contraction mapping theorem ensures existence and uniqueness of a solution.

...to Dynamic Games

- N players.
- The law of motion is a controlled discrete-time, finite-state, first-order Markov process, where

$$
\operatorname{Pr}\left(\omega_{t+1} \mid \omega_{t}, x_{t}\right)
$$

is the probability that the state transits from ω_{t} to ω_{t+1} if the controls are $x_{t}=$ $\left(x_{1 t}, \ldots, x_{N t}\right) \in \times_{n=1}^{N} D_{n}\left(\omega_{t}\right)$ and $D_{n}\left(\omega_{t}\right)$ is the nonempty set of feasible controls of player n in state ω_{t}.

- $\pi_{n}\left(\omega_{t}, x_{t}\right)$ is the per-period payoff of player n in state ω_{t} if the controls are x_{t}.
- The value function $V_{n}(\omega)$ of player n satisfies the Bellman equation

$$
\begin{equation*}
V_{n}(\omega)=\max _{x_{n} \in D_{n}(\omega)} \pi_{n}\left(\omega, x_{n}, X_{-n}(\omega)\right)+\beta \sum_{\omega^{\prime}=1}^{L} V_{n}\left(\omega^{\prime}\right) \operatorname{Pr}\left(\omega^{\prime} \mid \omega, x_{n}, X_{-n}(\omega)\right) \tag{2}
\end{equation*}
$$

and his optimal policy function $X_{n}(\omega)$ satisfies

$$
\begin{equation*}
X_{n}(\omega) \in \arg \max _{x_{n} \in D_{n}(\omega)} \pi_{n}\left(\omega, x_{n}, X_{-n}(\omega)\right)+\beta \sum_{\omega^{\prime}=1}^{L} V_{n}\left(\omega^{\prime}\right) \operatorname{Pr}\left(\omega^{\prime} \mid \omega, x_{n}, X_{-n}(\omega)\right) \tag{3}
\end{equation*}
$$

- The collection of equations (2) and (3) for all states $\omega \in \Omega$ and all players $n=1, \ldots, N$ defines a Markov-perfect equilibrium. The contraction mapping theorem does not apply and neither existence nor uniqueness of a MPE is guaranteed.

...to Dynamic Games

- Special case: ω is a vector partitioned into

$$
\left(\omega_{1}, \ldots, \omega_{N}\right),
$$

where ω_{n} denotes the (one or more) coordinates of the state that describe player n.
Examples: Production capacity, marginal cost, product quality.
Nomenclature:

- $\omega_{n} \in \Omega_{n}=\left\{1,2, \ldots, L_{n}\right\}$ is the state of player n;
- $\omega \in \times_{n=1}^{N} \Omega_{n}$ is the state of the game.

Equations (2) and (3) can be written as

$$
\begin{gathered}
V_{n}(\omega)=\max _{x_{n} \in D_{n}(\omega)} \pi_{n}\left(\omega, x_{n}, X_{-n}(\omega)\right)+\beta \sum_{\omega_{1}^{\prime}=1}^{L_{1}} \ldots \sum_{\omega_{N}^{\prime}=1}^{L_{N}} V_{n}\left(\omega^{\prime}\right) \operatorname{Pr}\left(\omega^{\prime} \mid \omega, x_{n}, X_{-n}(\omega)\right), \\
X_{n}(\omega) \in \arg \max _{x_{n} \in D_{n}(\omega)} \pi_{n}\left(\omega, x_{n}, X_{-n}(\omega)\right)+\beta \sum_{\omega_{1}^{\prime}=1}^{L_{1}} \ldots \sum_{\omega_{N}^{\prime}=1}^{L_{N}} V_{n}\left(\omega^{\prime}\right) \operatorname{Pr}\left(\omega^{\prime} \mid \omega, x_{n}, X_{-n}(\omega)\right) .
\end{gathered}
$$

- Even more special case: Transitions in player n's state are controlled by player n's actions and are independent of the actions of other players and transitions in their states, i.e.,

$$
\operatorname{Pr}\left(\omega^{\prime} \mid \omega, x\right)=\prod_{n=1}^{N} \operatorname{Pr}_{n}\left(\omega_{n}^{\prime} \mid \omega_{n}, x_{n}\right)
$$

Quality Ladder Model without Entry/Exit

- Pakes, A. \& McGuire, P. (1994) "Computing Markov-Perfect Nash Equilibria: Numerical Implications of a Dynamic Differentiated Product Model."
- Borkovsky, R., Doraszelski, U. \& Kryukov, Y. (2010) "A User's Guide to Solving Dynamic Stochastic Games Using the Homotopy Continuation Method."
- Discrete time, infinite horizon.
- Two firms with potentially different product qualities

$$
\omega=\left(\omega_{1}, \omega_{2}\right) \in\{1, \ldots, L\}^{2}=\Omega .
$$

- In each period, the timing is as follows:
- Firms choose investments in quality improvements.
- Product market competition takes place.
- Investment outcomes and depreciation shocks are realized.

Product Market Competition

- Firm n's demand is

$$
D_{n}\left(p_{1}, p_{2} ; \omega\right)=M \frac{\exp \left(g\left(\omega_{n}\right)-p_{n}\right)}{1+\sum_{k=1}^{2} \exp \left(g\left(\omega_{k}\right)-p_{k}\right)},
$$

where $M>0$ is market size and

$$
g\left(\omega_{n}\right)=\left\{\begin{array}{ccc}
3 \omega_{n}-4 & \text { if } & \omega_{n} \leq 5, \\
12+\ln \left(2-\exp \left(16-3 \omega_{n}\right)\right) & \text { if } & \omega_{n}>5
\end{array}\right.
$$

maps product quality into consumers' valuations.

- Firm n solves

$$
\max _{p_{n} \geq 0} D_{n}\left(p_{1}, p_{2} ; \omega\right)\left(p_{n}-c\right),
$$

where c is marginal cost of production.

- FOC:

$$
0=1-\frac{1+\exp \left(g\left(\omega_{-n}\right)-p_{-n}\right)}{1+\exp \left(g\left(\omega_{n}\right)-p_{n}\right)+\exp \left(g\left(\omega_{-n}\right)-p_{-n}\right)}\left(p_{n}-c\right), \quad n \neq-n .
$$

- Compute Nash equilibrium $\left(p_{1}(\omega), p_{2}(\omega)\right)$ by solving system of FOCs.
- Firm n's profit is

$$
\pi_{n}(\omega)=D_{n}\left(p_{1}(\omega), p_{2}(\omega) ; \omega\right)\left(p_{n}(\omega)-c\right) .
$$

Investment Dynamics

- Let $x_{n} \geq 0$ be firm n 's investment in quality improvements.
- Law of motion:
- Successful investment has probability $\frac{\alpha x_{n}}{1+\alpha x_{n}}$.
- Depreciation shock has probability δ.
- Transition probability: If $\omega_{n} \in\{2, \ldots, L-1\}$, then

$$
\operatorname{Pr}\left(\omega_{n}^{\prime} \mid \omega_{n}, x_{n}\right)=\left\{\begin{array}{clc}
\frac{(1-\delta) \alpha x_{n}}{1+\alpha \alpha x_{n}} & \text { if } & \omega_{n}^{\prime}=\omega_{n}+1 \\
\frac{1-\delta+\delta \alpha x_{n}}{1+\alpha x_{n}} & \text { if } & \omega_{n}^{\prime}=\omega_{n} \\
\frac{\delta}{1+\alpha x_{n}} & \text { if } & \omega_{n}^{\prime}=\omega_{n}-1
\end{array}\right.
$$

If $\omega_{n} \in\{1, L\}$, then

$$
\begin{aligned}
& \operatorname{Pr}\left(\omega_{n}^{\prime} \mid 1, x_{n}\right)=\left\{\begin{array}{clc}
\frac{(1-\delta) \alpha x_{n}}{1+\alpha x_{n}} & \text { if } & \omega_{n}^{\prime}=2 \\
\frac{1+\delta \alpha x_{n}}{1+\alpha x_{n}} & \text { if } & \omega_{n}^{\prime}=1
\end{array}\right. \\
& \operatorname{Pr}\left(\omega_{n}^{\prime} \mid L, x_{n}\right)=\left\{\begin{array}{clc}
\frac{1-\delta+\alpha x_{n}}{1+\alpha x_{n}} & \text { if } & \omega_{n}^{\prime}=L \\
\frac{\delta}{1+\alpha x_{n}} & \text { if } & \omega_{n}^{\prime}=L-1
\end{array}\right.
\end{aligned}
$$

Bellman Equation

- Let $V_{n}(\omega)$ denote the expected NPV to firm n if the current state is ω.
- Firm n's Bellman equation is

$$
V_{n}(\omega)=\max _{x_{n} \geq 0} \pi_{n}(\omega)-x_{n}+\beta \sum_{\omega_{n}^{\prime}=1}^{L} W_{n}\left(\omega_{n}^{\prime} ; \omega_{-n}, x_{-n}(\omega)\right) \operatorname{Pr}\left(\omega_{n}^{\prime} \mid \omega_{n}, x_{n}\right)
$$

where

- the expectation (with respect to its rival's successor state) of firm n 's continuation value in state ω_{n}^{\prime} is

$$
W_{n}\left(\omega_{n}^{\prime} ; \omega_{-n}, x_{-n}(\omega)\right)=\sum_{\omega_{-n}^{\prime}=1}^{L} V_{n}\left(\omega^{\prime}\right) \operatorname{Pr}\left(\omega_{-n}^{\prime} \mid \omega_{-n}, x_{-n}(\omega)\right)
$$

$-x_{-n}(\omega)$ is the rival's investment strategy;
$-\beta \in[0,1)$ is the discount factor.

Investment Strategy

- Firm n's investment strategy is

$$
x_{n}(\omega)=\arg \max _{x_{n} \geq 0} \pi_{n}(\omega)-x_{n}+\beta \sum_{\omega_{n}^{\prime}=1}^{L} W_{n}\left(\omega_{n}^{\prime}\right) \operatorname{Pr}\left(\omega_{n}^{\prime} \mid \omega_{n}, x_{n}\right),
$$

where $W_{n}\left(\omega_{n}^{\prime}\right)$ is shorthand for $W_{n}\left(\omega_{n}^{\prime} ; \omega_{-n}, x_{-n}(\omega)\right)$.

- If $\omega_{n} \in\{2, \ldots, L-1\}$, then
$x_{n}(\omega)=\frac{-1+\sqrt{\max \left\{1, \beta \alpha\left((1-\delta)\left(W_{n}\left(\omega_{n}+1\right)-W_{n}\left(\omega_{n}\right)\right)+\delta\left(W_{n}\left(\omega_{n}\right)-W_{n}\left(\omega_{n}-1\right)\right)\right)\right\}}}{\alpha}$.
If $\omega_{n} \in\{1, L\}$, then

$$
\begin{aligned}
& x_{n}(\omega)=\frac{-1+\sqrt{\max \left\{1, \beta \alpha(1-\delta)\left(W_{n}(2)-W_{n}(1)\right)\right\}}}{\alpha} \\
& x_{n}(\omega)=\frac{-1+\sqrt{\max \left\{1, \beta \alpha \delta\left(W_{n}(L)-W_{n}(L-1)\right)\right\}}}{\alpha}
\end{aligned}
$$

Equilibrium

- Profits from product market competition are symmetric:

$$
\pi_{1}\left(\omega_{1}, \omega_{2}\right)=\pi_{2}\left(\omega_{2}, \omega_{1}\right) .
$$

The remaining primitives are also symmetric.

- Symmetric Markov perfect equilibrium (MPE):
- Value function $V_{1}\left(\omega_{1}, \omega_{2}\right)=V\left(\omega_{1}, \omega_{2}\right)$ and $V_{2}\left(\omega_{1}, \omega_{2}\right)=V\left(\omega_{2}, \omega_{1}\right)$.
- Policy function $x_{1}\left(\omega_{1}, \omega_{2}\right)=x\left(\omega_{1}, \omega_{2}\right)$ and $x_{2}\left(\omega_{1}, \omega_{2}\right)=x\left(\omega_{2}, \omega_{1}\right)$.
- Existence in pure strategies is guaranteed (Doraszelski \& Satterthwaite 2010), uniqueness is not.
- The goal is to compute the value and policy functions (or, more precisely, $L \times L$ matrices) \mathbf{V} and x .

Computation: Pakes \& McGuire (1994) Algorithm

1. Make initial guesses \mathbf{V}^{0} and \mathbf{x}^{0}, choose a stopping criterion $\epsilon>0$, and initialize the iteration counter to $k=1$.
2. For all states $\omega \in \Omega$ compute

$$
x^{k+1}(\omega)=\arg \max _{x_{1} \geq 0} \pi_{1}(\omega)-x_{1}+\beta \sum_{\omega_{1}^{\prime}=1}^{L} W^{k}\left(\omega_{1}^{\prime}\right) \operatorname{Pr}\left(\omega_{1}^{\prime} \mid \omega_{1}, x_{1}\right)
$$

and

$$
V^{k+1}(\omega)=\pi_{1}(\omega)-x^{k+1}(\omega)+\beta \sum_{\omega_{1}^{\prime}=1}^{L} W^{k}\left(\omega_{1}^{\prime}\right) \operatorname{Pr}\left(\omega_{1}^{\prime} \mid \omega_{1}, x^{k+1}(\omega)\right)
$$

where

$$
W^{k}\left(\omega_{1}^{\prime}\right)=\sum_{\omega_{2}^{\prime}=1}^{L} V^{k}\left(\omega^{\prime}\right) \operatorname{Pr}\left(\omega_{2}^{\prime} \mid \omega_{2}, x^{k}\left(\omega_{2}, \omega_{1}\right)\right)
$$

3. If

$$
\max _{\omega \in \Omega}\left|\frac{V^{k+1}(\omega)-V^{k}(\omega)}{1+\left|V^{k+1}(\omega)\right|}\right|<\epsilon \quad \wedge \quad \max _{\omega \in \Omega}\left|\frac{x^{k+1}(\omega)-x^{k}(\omega)}{1+\left|x^{k+1}(\omega)\right|}\right|<\epsilon
$$

then stop; else increment the iteration counter k by one and go to step 2.

