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What are Dynamic Games?

e A tool for analyzing dynamic strategic interactions.
— dynamic — forward-looking players optimize over time;
— strategic — each player recognizes that its actions impact
other players.
e Often used to track evolution of oligopolistic industries.

— oligopolistic — neither perfectly competitive nor monop-
olistically competitive.



Dynamics + Strategic Interactions
= Dynamic Games

e Combine literature on long-run industry equilibrium (Jovanovic
1982, Hopenhayn 1992, Melitz 2003) with game theory (Ti-
role 1988, Fudenberg & Tirole 1991).



Why use Dynamic Games?

e Key findings of empirical literature on industry evolution (Mueller
1986, Dunne, Roberts, & Samuelson 1988, Davis & Halti-

wanger 1992):
— Entry and exit occur simultaneously.

— Heterogeneity among firms evolves endogenously in re-
sponse to random occurrences.

— Heterogeneity among firms persists over long stretches of
time.



Why use Dynamic Games?
e Game theory revolution in economics: emphasis on analyti-
cally tractable models.
— End effects.
— Transitional dynamics.

— Inherently dynamic phenomena.



Adgenda

e From dynamic programming to dynamic games.

e Application: Quality ladder model without entry/exit.



From Dynamic Programming. ..
Time is discrete. The horizon is infinite.
The state space Q = {1,2,..., L} is finite.

The state in period t is wy € 2. The law of motion is a controlled discrete-time,
finite-state, first-order Markov process, where

Prwiq1|wt, xt)
is the probability that the state transits from w; to wyy1 if the control is z; € D(w:) and
D(w:) is the nonempty set of feasible controls in state wy.

The objective is to maximize the expected NPV of payoffs

E Z Btﬂ—(wh xt) )
t=0

where 8 € [0,1) is the discount factor and w(w¢, z¢) is the per-period payoff in state wy
if the control is «;.

The value function V(w) is the maximum expected NPV of present and future payoffs
if the current state is w. It satisfies the Bellman equation

L
Viw) = max)w(w,x) + 5 V(W)Pr(w|w,x) (1)
zeD(w
w'=1
and the optimal policy function X (w) satisfies
L

X(w) € arg mDa(X)W(w,:B) + B V(W)Pr(w|w,x).
rxeD(w

w'=1

The collection of equation (1) for all states w € Q2 defines a system of nonlinear equa-
tions. The contraction mapping theorem ensures existence and unigueness of a solution.



... to Dynamic Games
N players.
The law of motion is a controlled discrete-time, finite-state, first-order Markov process,

where

Pr(w1|we, xt)
is the probability that the state transits from w; to w;4; if the controls are z; =
(z1t, - - -y zNe) € XN_  Dp(we) and Dy(w) is the nonempty set of feasible controls of player
n in state wy.

mn(we, ) is the per-period payoff of player n in state w; if the controls are x;.

The value function V,,(w) of player n satisfies the Bellman equation

L
Vi(w) = max Wn(w,xn,X_n(w))-|-BZVn(w’)Pr(w’\w,xn,X_n(w)) (2)
Tn€Dy (w ot

and his optimal policy function X,(w) satisfies

L
Xn(w) €3rg max m(w,n, Xon()) + 5 D Va@)Pr(Ww, zn, Xn(@)).  (3)
Tn€ D, (w
w'=1
The collection of equations (2) and (3) for all states w € 2 and all playersn=1,...,N

defines a Markov-perfect equilibrium. The contraction mapping theorem does not apply
and neither existence nor uniqueness of a MPE is guaranteed.



.to Dynamic Games

e Special case: w is a vector partitioned into
(w1,...,wN),
where w, denotes the (one or more) coordinates of the state that describe player n.

Examples: Production capacity, marginal cost, product quality.
Nomenclature:

— wp € 2, =1{1,2,...,L,} is the state of player n;
— wE >< —182, is the state of the game.

Equations (2) and (3) can be written as

Vi(w) = max (W, zn, X—n(w)) + 3 Z L Z V(WP |w, 2, X —n(w)),

Tn€Dy(w)
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Xo(w) € arg max mn(w, zn, X_n(w)) + 8 Z - Z Vi (W) Pr(W |w, Tn, X —n(w)).

Tn€Dp(w)

/] — [ J—
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e Even more special case: Transitions in player n's state are controlled by player n's
actions and are independent of the actions of other players and transitions in their
states, i.e.,

Pr(w|w, a: H Prn n\wn,xn) )



Quality Ladder Model without Entry/EXxit

Pakes, A. & McGuire, P. (1994) “Computing Markov-Perfect Nash Equi-
libria: Numerical Implications of a Dynamic Differentiated Product Model.”

Borkovsky, R., Doraszelski, U. & Kryukov, Y. (2010) “A User's Guide to
Solving Dynamic Stochastic Games Using the Homotopy Continuation
Method.”

Discrete time, infinite horizon.

Two firms with potentially different product qualities

w= (wi,w2) € {1,...,L}* = Q.

In each period, the timing is as follows:
— Firms choose investments in quality improvements.
— Product market competition takes place.

— Investment outcomes and depreciation shocks are realized.



Product Market Competition

Firm n's demand is
exp (g(wn) — pn)

Dn(p1,p2;w) =M :
o 1+ 52 exp (g(wr) — pr)

where M > 0 is market size and

(wy) = 3w, — 4 it wp, <5,
INWn) =1 124 1In(2—exp(16 —3wy)) if wp,>5

maps product quality into consumers’ valuations.

Firm n solves

max D, (p1, p2; w)(pn — ¢),
Pn=>0

where ¢ is marginal cost of production.

FOC:
- 1+ exp (g(w_pn) — p—n)
1 4+ exp (g(wn) — pn) + exp (9(w-n) — p-n)

(pn—c), n#—n.

Compute Nash equilibrium (p1(w),p2(w)) by solving system of FOCs.

Firm n's profit is
Tn(w) = Dp(p1(w), p2(w); w)(pn(w) — c).



Investment Dynamics
e Let z,, > 0 be firm n’'s investment in quality improvements.

e Law of motion:

— Successful investment has probability %

— Depreciation shock has probability §.

e Transition probability: If w, € {2,...,L — 1}, then

A—daz,  4f o = wn + 1,

/ 1 15|_a6x" "
Pl’(wn|wn,:cn) = —_H:"aaix” if w;l = Wy,
If w, € {1, L}, then
(1-9)ax, . )
e =2
Pr(w,|1l,z,) = 11;"505%; e A 1’
14ox, I Wp = 4
1-6+aozx, : A
=0T jf w, = L
Pr(w,|L,xn) = 1o, . ;" ’



Bellman Equation
e Let V,,(w) denote the expected NPV to firm n if the current state is w.

e Firm n's Bellman equation is

L
Vo(w) = rg:gg m(w) — xn + B Z W (w!; w_n, x_n(w))Pr(w!, |wn, z,),

w/ =1
where

— the expectation (with respect to its rival's successor state) of firm
n's continuation value in state w), is

L
Wn(waz;w—nax—n(w)) — Z Vn(W/)Pr(W/—n|w—nax—n(w));

w =1
— z_p(w) is the rival's investment strategy;

— B € [0,1) is the discount factor.



Investment Strategy

e Firm n's investment strategy is

L
— . / /
2o (W) = arg maxm(w) = an + B 3 Waw)Pr(wylwn, zn),

/| —
w =1

where W, (w!) is shorthand for W, (w}; w_n, z_n(w)).

o If w,€{2,...,L —1}, then

—1+ /max {1, Ba ((1 — &) (Walwn + 1) = Walwn)) + §(Wn(wn) — Walwn — 1))}

(6

rp(w) =
If Wn € {17L}' then
—14+ \/max{l,ﬁa(l —6) (Wp(2) — Wrp(1))}

«

xn(w) =

—1+ y/max {1, Bad (W,(L) — W,(L — 1))}

«

rn(w) =



Equilibrium

Profits from product market competition are symmetric:

Wl(wla WQ) — 7T2((U2, W]_)-

The remaining primitives are also symmetric.

Symmetric Markov perfect equilibrium (MPE):
— Value function Vl(wl,wg) = V(wl,wg) and Vg(wl,wg) = V(wg,wl).
— Policy function z1(w1,ws) = (w1, ws) and z2(wi,w2) = (w2, w1).

Existence in pure strategies is guaranteed (Doraszelski & Satterthwaite
2010), uniqueness is not.

The goal is to compute the value and policy functions (or, more precisely,
L x L matrices) V and x.



Computation: Pakes & McGuire (1994) Algorithm

1. Make initial guesses VO and x°, choose a stopping criterion ¢ > 0, and
initialize the iteration counter to kK = 1.

2. For all states w € 2 compute

L
"t (w) = arg Tg())(wl(w) —x1+ 8 Z W (W) Pr(w)|wr, 1)

wi=1
and
L
V(W) = m(w) — 2" (w) + 8 Y WH(wh)Prw)fwr, 25+ (W),
w;=1
where
L
WHwh) = ) VHW)Pr(whlws, 27 (w2, w1)).
wr,=1
3. If

k41 1k k41 Lk
VAR (w) — VH(w) N max | @) — et W)
1+ [V i(w)| we2 | 1+ |zt (w)]

then stop; else increment the iteration counter k£ by one and go to step
2.
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