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Agenda

• Discussion of problem set.

• Application: Capacity accumulation.

• Application: Advertising dynamics.

• Markov-perfect industry dynamics.

• Existence, purification, and multiplicity of equilibrium.

• Application: Quality ladder model with entry/exit.



Quality Ladder Model without Entry/Exit

• Pakes, A. & McGuire, P. (1994) “Computing Markov-Perfect Nash Equi-
libria: Numerical Implications of a Dynamic Differentiated Product Model.”

• Borkovsky, R., Doraszelski, U. & Kryukov, Y. (2010) “A User’s Guide to
Solving Dynamic Stochastic Games Using the Homotopy Continuation
Method.”

• Discrete time, infinite horizon.

• Two firms with potentially different product qualities

ω = (ω1, ω2) ∈ {1, . . . , L}2 = Ω.

• In each period, the timing is as follows:

– Firms choose investments in quality improvements.

– Product market competition takes place.

– Investment outcomes and depreciation shocks are realized.



Product Market Competition

• Firm n’s demand is

Dn(p1, p2;ω) = M
exp (g(ωn)− pn)

1 +
∑2

k=1 exp (g(ωk)− pk)
,

where M > 0 is market size and

g(ωn) =

{

3ωn − 4 if ωn ≤ 5,
12+ ln (2− exp (16− 3ωn)) if ωn > 5

maps product quality into consumers’ valuations.

• Firm n solves

max
pn≥0

Dn(p1, p2;ω)(pn − c),

where c is marginal cost of production.

• FOC:

0 = 1−
1+ exp (g(ω−n)− p−n)

1 + exp (g(ωn)− pn) + exp (g(ω−n)− p−n)
(pn − c), n 6= −n.

• Compute Nash equilibrium (p1(ω), p2(ω)) by solving system of FOCs.

• Firm n’s profit is

πn(ω) = Dn(p1(ω), p2(ω);ω)(pn(ω)− c).



Investment Dynamics

• Let xn ≥ 0 be firm n’s investment in quality improvements.

• Law of motion:

– Successful investment has probability αxn

1+αxn
.

– Depreciation shock has probability δ.

• Transition probability: If ωn ∈ {2, . . . , L− 1}, then

Pr(ω′
n|ωn, xn) =







(1−δ)αxn

1+αxn
if ω′

n = ωn +1,
1−δ+δαxn

1+αxn
if ω′

n = ωn,
δ

1+αxn
if ω′

n = ωn − 1.

If ωn ∈ {1, L}, then

Pr(ω′
n|1, xn) =

{
(1−δ)αxn

1+αxn
if ω′

n = 2,
1+δαxn

1+αxn
if ω′

n = 1,

Pr(ω′
n|L, xn) =

{
1−δ+αxn

1+αxn
if ω′

n = L,
δ

1+αxn
if ω′

n = L− 1.



Bellman Equation

• Let Vn(ω) denote the expected NPV to firm n if the current state is ω.

• Firm n’s Bellman equation is

Vn(ω) = max
xn≥0

πn(ω)− xn + β

L∑

ω′
n=1

Wn(ω
′
n;ω−n, x−n(ω))Pr(ω′

n|ωn, xn),

where

– the expectation (with respect to its rival’s successor state) of firm
n’s continuation value in state ω′

n is

Wn(ω
′
n;ω−n, x−n(ω)) =

L∑

ω′
−n=1

Vn(ω
′)Pr(ω′

−n|ω−n, x−n(ω));

– x−n(ω) is the rival’s investment strategy;

– β ∈ [0,1) is the discount factor.



Investment Strategy

• Firm n’s investment strategy is

xn (ω) = argmax
xn≥0

πn(ω)− xn + β

L∑

ω′
n=1

Wn(ω
′
n)Pr(ω′

n|ωn, xn),

where Wn(ω′
n) is shorthand for Wn(ω′

n;ω−n, x−n(ω)).

• If ωn ∈ {2, . . . , L− 1}, then

xn(ω) =
−1+

√
max {1, βα ((1− δ)(Wn(ωn +1)−Wn(ωn)) + δ(Wn(ωn)−Wn(ωn − 1)))}

α
.

If ωn ∈ {1, L}, then

xn(ω) =
−1+

√

max {1, βα(1− δ) (Wn(2)−Wn(1))}

α
,

xn(ω) =
−1+

√

max {1, βαδ (Wn(L)−Wn(L− 1))}

α
.



Equilibrium

• Profits from product market competition are symmetric:

π1(ω1, ω2) = π2(ω2, ω1).

The remaining primitives are also symmetric.

• Symmetric Markov perfect equilibrium (MPE):

– Value function V1(ω1, ω2) = V (ω1, ω2) and V2(ω1, ω2) = V (ω2, ω1).

– Policy function x1(ω1, ω2) = x(ω1, ω2) and x2(ω1, ω2) = x(ω2, ω1).

• Existence in pure strategies is guaranteed (Doraszelski & Satterthwaite
2010), uniqueness is not.

• The goal is to compute the value and policy functions (or, more precisely,
L× L matrices) V and x.



Computation: Pakes & McGuire (1994) Algorithm

1. Make initial guesses V0 and x0, choose a stopping criterion ǫ > 0, and
initialize the iteration counter to k = 1.

2. For all states ω ∈ Ω compute

xk+1 (ω) = argmax
x1≥0

π1(ω)− x1 + β

L∑

ω′
1=1

W k(ω′
1)Pr(ω′

1|ω1, x1)

and

V k+1(ω) = π1(ω)− xk+1(ω) + β

L∑

ω′
1=1

W k(ω′
1)Pr(ω′

1|ω1, x
k+1(ω)),

where

W k(ω′
1) =

L∑

ω′
2=1

V k(ω′)Pr(ω′
2|ω2, x

k(ω2, ω1)).

3. If

max
ω∈Ω

∣
∣
∣
∣

V k+1(ω)− V k(ω)

1 + |V k+1(ω)|

∣
∣
∣
∣
< ǫ ∧ max

ω∈Ω

∣
∣
∣
∣

xk+1(ω)− xk(ω)

1 + |xk+1(ω)|

∣
∣
∣
∣
< ǫ

then stop; else increment the iteration counter k by one and go to step
2.



Application to Capacity Accumulation

• Besanko, D. & Doraszelski, U. (2004) “Capacity Dynamics and Endoge-
nous Asymmetries in Firm Size.”

• Substantial and persistent differences in firm sizes despite idiosyncratic
shocks (Gort 1963, Mueller 1986, McGahan & Porter 1997).

• Size differences can arise endogenously in asymmetric equilibria of two-
or three-stage models of capacity choice (Saloner 1987, Maggi 1996,
Reynolds & Wilson 2000).

• But: What happens if firms are subject to idiosyncratic shocks? What
about feedback effects?

• Dynamic models of capacity accumulation:

– Steady-state analysis (Spence 1979, Fudenberg & Tirole 1983).

– Linear-quadratic games (Hanig 1985, Reynolds 1987, 1991, Dockner
1992).



Relationship to Quality Ladder Model

• State variables ω = (ω1, ω2) are capacities of firms 1 and 2.

• Firms invest in capacity. Capacity may depreciate.

• Product market competition:

– Quantity competition subject to capacity constraints.

– Price competition subject to capacity constraints.



Substantial and Persistent Differences in Firm Sizes

quantity competition price competition

irreversible slightly

investment symmetric firms asymmetric firms

(δ = 0)

reversible hugely

investment symmetric firms asymmetric firms

(δ > 0)



Investment Reversibility and Preemption Races

• Policy function x(i, j). Price competition with δ ∈ {0,0.01,0.1,0.3}.

0 1 2 3 4 5 6 7 8 9

0123456789
0

10

20

30

i

δ=0.00

j

x(
i,j

)

0 1 2 3 4 5 6 7 8 9

0123456789
0

10

20

30

i

δ=0.01

j

x(
i,j

)

0 1 2 3 4 5 6 7 8 9

0123456789
0

10

20

30

i

δ=0.10

j

x(
i,j

)

0 1 2 3 4 5 6 7 8 9

0123456789
0

10

20

30

i

δ=0.30

j

x(
i,j

)



Investment Reversibility and Preemption Races

• Transient distribution after T = 5 with i0 = j0 = 1. Price

competition with δ ∈ {0,0.01,0.1,0.3}.
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Investment Reversibility and Preemption Races

• Transient distribution after T = 25 with i0 = j0 = 1. Price

competition with δ ∈ {0,0.01,0.1,0.3}.
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Investment Reversibility and Preemption Races

• Limiting distribution. Price competition with δ ∈ {0,0.01,0.1,0.3}.

0 1 2 3 4 5 6 7 8 9

0123456789
0

0.5

1

i

δ=0.00

j

π ij

0 1 2 3 4 5 6 7 8 9

0123456789
0

0.2

0.4

i

δ=0.01

j

π ij

0 1 2 3 4 5 6 7 8 9

0123456789
0

0.05

0.1

i

δ=0.10

j

π ij

0 1 2 3 4 5 6 7 8 9

0123456789
0

0.02

0.04

i

δ=0.30

j

π ij



Investment Reversibility and Preemption Races

• “An open issue (...) is the behavior of investment in the

industry when capital depreciates. Intuition suggests that

capital ought to lose some of its commitment value and that

the steady-state levels of capital should be less sensitive to

the initial head start of one of the firms.” (Tirole 1988, p.

345)

• This paper: Investment reversibility may make preemption

races more attractive.



Investment Reversibility and Preemption Races

• What is the main difference between the two modes of prod-
uct market competition?

– Capacity-constrained quantity competition: a firm’s profit
plateaus in own capacity.

– Capacity-constrained price competition: a firm’s profit
peaks in own capacity (provided rival has sufficient ca-
pacity).
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Investment Reversibility and Preemption Races

• Under price competition, it is in the self-interest of a not-

too-small firm to withdraw from the race once its rival has

gained a size advantage over it.

• By building up its capacity, a firm hopes to gain an initial

edge over its rival and to decide the race in its favor.

• A firm anticipates that once it gains an edge over its rival,

its rival will withdraw capacity.

• It is easier to withdraw capacity if the rate of depreciation is

high. Conversely, it is impossible to withdraw capacity if the

rate of depreciation is zero.



Application to Advertising Dynamics

• Doraszelski, U. & Markovich, S. (2007) “Advertising Dynam-

ics and Competitive Advantage.”

• Can advertising lead to a sustainable competitive advantage?

• Existing static models of advertising competition (Butters

1977, Grossman & Shapiro 1984, Boyer & Moreaux 1999)

cannot address this question.

• Existing dynamic models of advertising competition (Fried-

man 1983, Fershtman 1984, Cellini & Lambertini 2003) say

no (globally stable symmetric steady state).

• This paper: Yes!



Goodwill and Awareness Advertising

• Consumer m’s problem is to choose among the products in his choice set
Cm such that

max
n∈Cm

(vn − pn + ǫmn) .

• Goodwill advertising influences the utility that consumers derive from the
product.

– Persuasive advertising (Dixit & Norman 1978).

– Complementary advertising (Stigler & Becker 1977, Becker & Murphy
1993).

• Awareness advertising influences the share of consumers who are aware
of the product.

– Informative advertising (Stigler 1961, Butters 1977, Grossman &
Shapiro 1984).



Relationship to Quality Ladder Model

• Goodwill advertising: State variables v = (v1, v2) are per-

ceived qualities of firms 1 and 2.

• Awareness advertising: State variables s = (s1, s2) are shares

of consumers who are aware of firms 1 and 2.

• Firms invest in advertising. Goodwill/awareness may depre-

ciate.

• Product market competition: Price competition with differ-

entiated products.



Sustainable Competitive Advantage: Goodwill Advertising

small market/ large market/

expensive advertising cheap advertising

extremely

asymmetric firms symmetric firms



Goodwill Advertising and Cost/Benefit Considerations

• Marginal benefit of advertising is determined by

π(v1 +∆, v2)− π(v1, v2)

and is proportional to market size.

• In a small market, the marginal benefit is small.

• Marginal benefit is decreasing in rival’s goodwill → large firm

can deter small firm.

• Marginal benefit is increasing in firm’s goodwill → large firm

cannot deter medium or large firm.



Sustainable Competitive Advantage: Awareness Advertising

low perceived quality high perceived quality

symmetric firms asymmetric firms



Awareness Advertising and Product Market Competition

• What is the main difference between low and high perceived

quality?

– Low perceived quality: a firm’s profit increases in own

awareness.

– High perceived quality: a firm’s profit first increases then

decreases in own awareness (provided rival has sufficient

awareness).
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Awareness Advertising and Product Market Competition

• Perceived quality of firms’ products and intensity of compe-

tition.

• Captive segment vs competitive segment: The probability of

buying from firm 1 is

D1(p1, p2; s1, s2)

= s1(1− s2)
exp(v − p1)

1 + exp(v − p1)︸ ︷︷ ︸

captive segment

+s1s2
exp(v − p1)

1 + exp(v − p1) + exp(v − p2)︸ ︷︷ ︸

competitive segment

.

• If s2 = 0 (s2 = 1), firm 1 set its monopolistic (duopolistic)

price.

• More generally, s2 ↑→ p∗1 ↓→ p∗2 ↓.



Awareness Advertising and Product Market Competition

• Strategic advantage is grounded in product market compe-

tition.

• With high perceived quality, a medium firm is better off stay-

ing put → large firm can deter medium firm.

• With high perceived quality, a small firm is better off trying

to grow → large firm cannot deter small firm.

• Strategic advantage is independent of cost/benefit consider-

ations.



Markov-Perfect Industry Dynamics

• Ericson, R. & Pakes, A. (1995) “Markov-Perfect Industry Dynamics: A
Framework for Empirical Work.”

• EP model tracks evolution of oligopolistic industries.

• Special case of dynamic game:

– Entry, exit, and investment decisions.

– Product market competition.

• Captures key findings of empirical literature on industry evolution:

– Entry and exit occur simultaneously.

– Heterogeneity among firms evolves endogenously and persists.



Applications in IO and Other Fields

• Advertising (Doraszelski & Markovich 2007).

• Capacity accumulation (Besanko & Doraszelski 2004, Chen 2009, Ryan 2012, Besanko,
Doraszelski, Lu & Satterthwaite 2010a, 2010b, Wilson 2012).

• Collusion (Fershtman & Pakes 2000, 2005, de Roos 2004).

• Competitive convergence (Langohr 2003).

• Consumer learning (Ching 2010).

• Corporate reputation (Abito, Besanko & Diermeier 2012).

• Learning by doing (Benkard 2004, Besanko, Doraszelski, Kryukov & Satterthwaite 2010,
Besanko, Doraszelski & Kryukov 2014, Besanko, Doraszelski & Kryukov 2016).

• Mergers (Berry & Pakes 1993, Gowrisankaran 1999, Mermelstein, Nocke, Satterthwaite
& Whinston 2013).

• Network effects (Jenkins, Liu, Matzkin & McFadden 2004, Markovich 2004, Markovich
& Moenius 2005, Chen, Doraszelski & Harrington 2009).

• Productivity growth (Laincz 2005).

• R&D (Gowrisankaran & Town 1997, Auerswald 2001, Song 2011).

• Switching costs (Chen 2011).

• Technology adoption (Schivardi & Schneider 2005).

• International trade (Erdem & Tybout 2003).

• Finance (Goettler, Parlour & Rajan 2004).



Connections to Operations Research
and Applied Math Literatures

• Discrete-time games go back to Shapley (1953), continuous-time games
to Isaacs (1954).

• Markov perfect equilibrium (Maskin & Tirole 2001) “rediscovers” feed-
back Nash equilibrium.

• Lots of existence proofs (Sobel 1971, Federgruen 1976, Whitt 1980).

• Less on algorithms.

• Not everything is useful for economics (zero-sum games, average-payoff
games).

• Good textbooks: Filar & Vrieze (1997), Basar & Olsder (1999).



Connections to Economics Literature

• EP model combines literature on long-run industry equilib-

rium (Jovanovic 1982, Hopenhayn 1992, Melitz 2003) with

game theory (Tirole 1988, Fudenberg & Tirole 1991).

• EP model builds on analytically tractable special cases of

dynamic games:

– exponential games (Loury 1979, Lee & Wilde 1980, Rein-

ganum 1982).

– linear-quadratic games (Friedman 1983, Fershtman 1984,

Reynolds 1987, 1991, Dockner 1992).



Existence, Purification, and Multiplicity of Equilibrium

• Doraszelski, U. & Satterthwaite, M. (2010) “Computable Markov-Perfect
Industry Dynamics.”

• Questions:

– Does a MPE exist in the EP model?

– Is the MPE computationally tractable?

∗ Pure strategies.

∗ Symmetric and anonymous (exchangeable).

– Is the MPE unique?

• Answers:

– In the EP model a symmetric and anonymous MPE in pure strategies
always exists under reasonable conditions.

– The MPE is not necessarily unique.



Three Difficulties

• Randomization over discrete actions (entry/exit):

– Introduce randomly drawn, privately-known setup costs/scrap values
→ the game of incomplete information has a MPE in cutoff entry/exit
strategies.

• Randomization over continuous actions (investment):

– Provide conditions on the model’s primitives (UIC admissibility) such
that a firm’s optimal investment level is always unique → the MPE is
in pure investment strategies.

– Recent generalization: Escobar, J. (2013) “Equilibrium Analysis of
Dynamic Models of Imperfect Competition.”

• Symmetry and anonymity.

– Provide conditions on the model’s primitives → the MPE is symmetric
and anonymous.



Quality Ladder Model with Entry/Exit

• Pakes, A. & McGuire, P. (1994) “Computing Markov-Perfect Nash Equi-
libria: Numerical Implications of a Dynamic Differentiated Product Model.”

• Borkovsky, R., Doraszelski, U. & Kryukov, Y. (2012) “A Dynamic Quality
Ladder Model with Entry and Exit: Exploring the Equilibrium Correspon-
dence Using the Homotopy Method.”

• Incumbent firms (i.e., active firms) and potential entrants (i.e., inactive
firms).

• Two firms that can be either a potential entrant or an incumbent firm
with potentially different product qualities

ω = (ω1, ω2) ∈ { 1, . . . , L
︸ ︷︷ ︸

active firm

, L+ 1
︸ ︷︷ ︸

inactive firm

}2 = Ω.

• Exit is a transition from state ωn 6= L+1 to state ω′
n = L+1.

• Entry is a transition from state ωn = L + 1 to state ω′
n = ωe 6= L + 1,

where ωe is an exogenously given initial product quality.



Quality Ladder Model with Entry/Exit

• Let ξn(ω) ∈ [0,1] be firm n’s probability of remaining in (if

ωn 6= L+1) or entering into (if ωn = L+1) the industry.

• Transition probability: If ωn ∈ {2, . . . , L− 1}, then

Pr(ω′
n|ωn, ξn, xn) =







ξn
(1−δ)αxn
1+αxn

if ω′
n = ωn +1,

ξn
1−δ+δαxn
1+αxn

if ω′
n = ωn,

ξn
δ

1+αxn
if ω′

n = ωn − 1,

1− ξn if ω′
n = L+1,

etc. If ωn = L+1, then

Pr(ω′
n|ωn, ξn) =

{

ξn if ω′
n = ωe,

1− ξn if ω′
n = L+1.



Quality Ladder Model with Entry/Exit

• Firm n is assigned a random scrap value φn ∼ F (if ωn 6= L + 1) or a
random setup cost φe

n ∼ F e (if ωn = L+1).

– Scrap values/setup costs are private information.

– Scrap values/setup costs are independent across firms and periods.

• Because scrap values and setup costs are private to a firm, its rivals
perceive the firm as if it is mixing.

• In each period the timing is as follows:

– Incumbent firms learn their scrap value and decide on exit and invest-
ment. Potential entrants learn their setup cost and decide on entry
and investment.

– Incumbent firms compete in the product market.

– Exit and entry decisions are implemented.

– The investment decisions of the remaining incumbents and new en-
trants are carried out and their uncertain outcomes are realized.



Incumbent Firm

• Bellman equation without entry/exit:

Vn(ω) = max
xn≥0

πn(ω)− xn + β

L∑

ω′
n=1

Wn(ω
′
n;ω−n, x−n(ω))Pr(ω′

n|ωn, xn).

• Bellman equation with entry/exit:

Vn(ω) = max
ξn∈[0,1],xn≥0

πn(ω) + (1− ξn)E
{
φn|φn ≥ F−1(ξn)

}

+ξn






−xn + β

L∑

ω′
n=1

Wn(ω
′
n;ω−n, ξ−n(ω), x−n(ω))Pr(ω′

n|ωn, xn, ξn = 1)






,

where

(1− ξn)E
{
φn|φn ≥ F−1(ξn)

}
=

∫

φn≥F −1(ξn)

φndF (φn).

• An optimizing incumbent cares about the scrap value conditional on
receiving it.

• Optimality condition:

ξn(ω) = F



−xn(ω) + β

L∑

ω′
n=1

Wn(ω
′
n;ω−n, ξ−n(ω), x−n(ω))Pr(ω′

n|ωn, xn(ω), ξn = 1)



 .



Incumbent Firm: Derivation of Bellman Equation

• Let χn(ω, φn) ∈ {0,1} be firm n’s decision of remaining in (if ωn 6= L+1)
or entering into (if ωn = L+1) the industry.

• Let ξn(ω) =
∫
χn(ω, φn)dF (φn) be firm n’s probability of remaining in (if

ωn 6= L+1) or entering into (if ωn = L+1) the industry (as perceived by
its rivals).

• Let Vn(ω, φn) be the value function of incumbent firm n after it observes
its scrap value.

• Bellman equation:

Vn(ω, φn) = max
χn∈{0,1},xn≥0

πn(ω) + (1− χn)φn

+χn






−xn + β

L∑

ω′
n=1

Wn(ω
′
n;ω−n, ξ−n(ω), x−n(ω))Pr(ω′

n|ωn, xn, ξn = 1)






,

• The problem of the incumbent can be broken up into two parts:

– The incumbent chooses its investment conditional on remaining in
the industry → the optimal investment choice is independent of the
firm’s scrap value.

– Given its investment choice, the incumbent decides whether or not
to remain in the industry.



Incumbent Firm: Derivation of Bellman Equation

• Optimal decision has reservation property:

χn(ω, φn) =

{

1 if φn ≤ φ̄n(ω),
0 if φn ≥ φ̄n(ω),

where

φ̄n(ω) = max
xn≥0

−xn + β

L∑

ω′
n=1

Wn(ω
′
n;ω−n, ξ−n(ω), x−n(ω))Pr(ω′

n|ωn, xn, ξn = 1)

denotes the cutoff scrap value.

• Restrict attention to decision rules of the form 1[φn < φ̄n(ω)].

• Instead of the cutoff φ̄n(ω), represent these rules with the induced prob-
ability ξn(ω):

ξn(ω) =

∫

χ(ω, φn)dF (φn) =

∫

1[φn < φ̄n(ω)]dF (φn) = F (φ̄n(ω))

⇔ φ̄n(ω) = F−1(ξn(ω))

provided F has positive density on its support.



Incumbent Firm: Derivation of Bellman Equation

• Imposing the reservation property on the Bellman equation yields

Vn(ω, φn) = max
χn∈{0,1},xn≥0

πn(ω) + (1− χn)φn

+χn

{

−xn + β

L∑

ω′
n=1

Wn(ω
′
n;ω−n, ξ−n(ω), x−n(ω))Pr(ω′

n|ωn, xn, ξn = 1)

}

= max
ξn∈[0,1],xn≥0

πn(ω) + (1− 1[φn < F−1(ξn)])φn

+1[φn < F−1(ξn)]

{

−xn + β

L∑

ω′
n=1

Wn(ω
′
n;ω−n, ξ−n(ω), x−n(ω))Pr(ω′

n|ωn, xn, ξn = 1)

}

.



Incumbent Firm: Derivation of Bellman Equation

• Let Vn(ω) =
∫

Vn(ω, φn)dF (φn) be the value function of incumbent firm n before it
observes its scrap value.

• Integrating over φn on both sides of the Bellman equation yields

Vn(ω) =

∫

max
ξn∈[0,1],xn≥0

πn(ω) + (1− 1[φn < F−1(ξn)])φn

+1[φn < F−1(ξn)]

{

−xn + β

L∑

ω′
n=1

Wn(ω
′
n;ω−n, ξ−n(ω), x−n(ω))Pr(ω′

n|ωn, xn, ξn = 1)

}

dF (φn)

= max
ξn∈[0,1],xn≥0

πn(ω) +

∫

φn≥F−1(ξn)

φndF (φn)

+ξn

{

−xn + β

L∑

ω′
n=1

Wn(ω
′
n;ω−n, ξ−n(ω), x−n(ω))Pr(ω′

n|ωn, xn, ξn = 1)

}

.



Potential Entrant

• Potential entrants are short-lived.

• Bellman equation:

Vn(ω) = max
ξn∈[0,1]

ξn

{

− E
{
φe
n|φ

e
n ≤ F e−1(ξn)

}

+β

L∑

ω′
n=1

Wn(ω
′
n;ω−n, ξ−n(ω), x−n(ω))Pr(ω′

n|ωn, ξn = 1)

}

,

where

ξnE
{
φe
n|φ

e
n ≤ F e−1(ξn)

}
=

∫

φe
n≤F e−1(ξn)

φe
ndF

e(φe
n).

• An optimizing entrant cares about the setup cost conditional on paying
it.

• Optimality condition:

ξn(ω) = F e



β

L∑

ω′
n=1

Wn(ω
′
n;ω−n, ξ−n(ω), x−n(ω))Pr(ω′

n|ωn, ξn = 1)



 .


