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Agenda

• Discussion of problem set.

• Computing all equilibria: Homotopy method.

• Computational burden.

• Open questions.



Learning-by-Doing

• Besanko, D., Doraszelski, U., Kryukov, S. & Satterthwaite, M. (2010) “Learning-by-
Doing, Organizational Forgetting, and Industry Dynamics.”

• Discrete time, infinite horizon.

• Two firms with potentially different stocks of know-how

ω = (ω1, ω2) ∈ {1, . . . , L}2 = Ω.

• In each period, the timing is as follows:

– Firms choose prices.

– One buyer enters the market and makes at most one purchase.

– Learning-by-doing and organizational forgetting occur and the firms’ stocks of
know-how change accordingly.

• Law of motion:

ω′
n = ωn + qn − fn,

where

– qn ∈ {0,1} indicates whether firm n makes a sale with

Pr(qn = 1) = Dn(p1, p2) =
exp(v − pn)

1 +
∑2

k=1
exp(v − pk)

;

– fn ∈ {0,1} represents organizational forgetting with

Pr(fn = 1) = ∆(ωn) = 1− (1− δ)ωn.



Bellman Equation

• Let Vn(ω) denote the expected NPV to firm n if the current state is ω.

• Firm n’s Bellman equation is

Vn(ω) = max
pn

Dn(pn, p−n(ω))(pn − c(ωn)) + β

2
∑

k=0

Dk(pn, p−n(ω))Wnk(ω),

where

– p−n(ω) is the price charged by the other firm;

– the marginal cost of production is

c(ωn) =

{

κω
η
n if 1 ≤ ωn < l,

κlη if l ≤ ωn ≤ L,

with η = log2 ρ for a progress ratio of ρ;

– β ∈ (0,1) is the discount factor;

– Wnk(ω) is the expectation of firm n’s value function conditional on
buyer purchasing good k ∈ {0,1,2} (good 0 is outside good).



Bellman Equation

• Continuation values:

Wn0(ω) =

L
∑

ω′
1=1

L
∑

ω′
2=1

Vn(ω
′)Pr(ω′

1|ω1, q1 = 0)Pr(ω′
2|ω2, q2 = 0),

Wn1(ω) =

L
∑

ω′
1=1

L
∑

ω′
2=1

Vn(ω
′)Pr(ω′

1|ω1, q1 = 1)Pr(ω′
2|ω2, q2 = 0),

Wn2(ω) =

L
∑

ω′
1=1

L
∑

ω′
2=1

Vn(ω
′)Pr(ω′

1|ω1, q1 = 0)Pr(ω′
2|ω2, q2 = 1),

where

Pr(ω′
n|ωn, qn) =

{

1−∆(ωn) if ω′
n = ωn + qn,

∆(ωn) if ω′
n = ωn + qn − 1,

and Pr(L|L, qn = 1) = 1 and Pr(1|1, qn = 0) = 1.



Pricing Strategy

• pn(ω) is unique solution to FOC:

0 = 1− (1−Dn(pn, p−n(ω))) (pn − c(ωn))− βWnn(ω)

+β
2
∑

k=0

Dk(pn, p−n(ω))Wnk(ω).

• No closed-firm solution. Solve numerically.



Equilibrium

• Primitives are symmetric.

• Symmetric Markov perfect equilibrium (MPE):

– Value function V1(ω1, ω2) = V (ω1, ω2) and V2(ω1, ω2) = V (ω2, ω1).

– Policy function p1(ω1, ω2) = p(ω1, ω2) and p2(ω1, ω2) = p(ω2, ω1).

• Existence in pure strategies is guaranteed (Doraszelski & Satterthwaite
2010), uniqueness is not.

• The goal is to compute the value and policy functions (or, more precisely,
L× L matrices) V and p.



Multiple Equilibria

Proposition 1 If organizational forgetting is either absent (δ = 0) or certain
(δ = 1), then there is a unique equilibrium.

Result 1 If organizational forgetting is neither absent (δ = 0) nor certain
(δ = 1), then there may be multiple equilibria.
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Homotopy Method

• Besanko, D., Doraszelski, U., Kryukov, S. & Satterthwaite,

M. (2010) “Learning-by-Doing, Organizational Forgetting,

and Industry Dynamics.”

Additional reading:

– Borkovsky, R., Doraszelski, U., & Kryukov, Y. (2010) “A

User’s Guide to Solving Dynamic Stochastic Games Using

the Homotopy Method.”

• Show that there are equilibria that the Pakes & McGuire

(1994) algorithm cannot compute.

• Propose a homotopy algorithm to trace out the equilibrium

correspondence.



Homotopy Method: Learning-by-Doing

• Bellman equation and FOC for state ω are

V (ω) = D1(ω) (p(ω)− c(ω1)) + β

2
∑

k=0

Dk(ω)Wk(ω),

0 = 1− (1−D1(ω)) (p(ω)− c(ω1))− βW1(ω) + β

2
∑

k=0

Dk(ω)Wk(ω),

where Dk(ω) = Dk(p(ω), p(ω2, ω1)), k ∈ {0,1,2}.

• The system of 2L2 nonlinear equations given by the collection of the
above equations for each state ω ∈ {1, . . . , L}2 defines a symmetric equi-
librium.



Homotopy Method: Learning-by-Doing

• Write the system of 2L2 nonlinear equations (Bellman equations and
FOCs) as

F(x, δ) = 0,

where

x = (V (1,1), . . . , V (L,L), p(1,1), . . . , p(L,L)) .

• The object of interest is the equilibrium correspondence

F−1 = {(x, δ)|F(x, δ) = 0} .

• The homotopy algorithm follows a path from the unique equilibrium at
δ = 0 to the unique equilibrium at δ = 1.
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Homotopy Method

• Define a parametric path to be a set of functions (x(s), δ(s)) such that
(x(s), δ(s)) ∈ F−1.

• The conditions that are required to remain “on path” are found by dif-
ferentiating

F(x(s), δ(s)) = 0

with respect to s:

2L2

∑

i=1

∂F(x(s), δ(s))

∂xi

x′
i(s) +

∂F(x(s), δ(s))

∂δ
δ′(s) = 0.

• While there are many solutions, all of them describe the same path.

• One solution obeys the so-called basic differential equations (BDE)

y′i(s) = (−1)i+1 det

((

∂F(y(s))

∂y

)

−i

)

, i = 1, . . . ,2L2 +1, (1)

where y(s) = (x(s), δ(s)) and the notation (·)−i is used to indicate that

the ith column is removed from the (2L2 × 2L2 + 1) Jacobian ∂F(y(s))
∂y

.

• The BDE reduce the task of tracing out the equilibrium correspondence
to solving a system of differential equations.



Homotopy Method: Simple Example

• Consider

F (x, δ) = −15.289−
δ

1+ δ4
+67.500x− 96.923x2 +46.154x3

with

∂F (x, δ)

∂(x, δ)
=

(

67.500− 2 · 96.923x+3 · 46.154x2 − 1−3δ4

(1+δ4)
2

)

.

• Basic differential equations:
(

dx
ds
dδ
ds

)

=

(

∂F (x,δ)
∂δ

−∂F (x,δ)
∂x

)

=

(

− 1−3δ4

(1+δ4)
2

−67.500+ 2 · 96.923x− 3 · 46.154x2

)

with initial condition x(0) = 0.5 and δ(0) = 0.

• Solve with e.g. finite-difference methods.
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Homotopy Method

• The homotopy F is regular iff ∂F(y)
∂y

has full rank at all points in F−1.
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Equilibrium Correspondence: Learning-by-Doing

Result 2 The equilibrium correspondence F−1 contains a unique path that
connects the equilibrium at δ = 0 with the equilibrium at δ = 1. In addition,
F−1 may contain (one or more) loops that are disjoint from this “main path”
and from each other.
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Pakes & McGuire (1994) Algorithm

• Executes the iteration

xl+1 = G(xl), l = 0,1,2, . . . ,

where, for each state ω ∈ {1, . . . , L}2, old guesses for the value and policy
of firm 1 are mapped into new guesses as follows:

pl+1 (ω) = argmax
p1

D1(p1, p
l(ω2, ω1)) (p1 − c(ω1))

+β

2
∑

k=0

Dk(p1, p
l(ω2, ω1))W

l
k(ω),

V l+1 (ω) = D1(p
l+1(ω), pl(ω2, ω1))

(

pl+1(ω)− c(ω1)
)

+β

2
∑

k=0

Dk(p
l+1(ω), pl(ω2, ω1))W

l
k(ω).

• Let A be an arbitrary matrix and ̺(A) its spectral radius. Local conver-

gence depends on ̺
(

∂G(x∗)
∂x

)

at the fixed point x∗ = G(x∗).



Pakes & McGuire (1994) Algorithm

• “Inbetween” two equilibria that can be computed using the Pakes &
McGuire (1994) algorithm, there is one equilibrium that cannot:

Proposition 2 If δ′(s) ≤ 0, then ̺

(

∂G(x(s))
∂x

∣

∣

∣

δ(s)

)

≥ 1.

• Let I denote the (2L2 × 2L2) identity matrix. Then

∂G(x(s))

∂x

∣

∣

∣

∣

δ(s)

=
∂F(x(s), δ(s))

∂x
+ I. (2)

• The BDE (1) imply

δ′(s) = det

(

∂F(x(s), δ(s))

∂x

)

.

• Since the determinant of ∂F(x(s),δ(s))
∂x

is the product of 2L2 eigenvalues, if

δ′(s) ≤ 0, then there exists at least one real nonnegative eigenvalue.

• Let A be an arbitrary matrix and ς(A) its spectrum. Then ς(A + I) =
ς(A) + 1.

• It follows from equation (2) that ∂G(x(s))
∂x

∣

∣

∣

δ(s)
has at least one real eigen-

value equal to or bigger than unity.



Equilibrium Correspondence: Learning-by-Doing

Result 3 The equilibrium correspondence F−1 contains a unique path that
connects the equilibrium at δ = 0 with the equilibrium at δ = 1. In addition,
F−1 may contain (one or more) loops that are disjoint from this “main path”
and from each other.
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Alternative Approaches to Computing all Equilibria

• If the system of equations is polynomial, then. . .

– Judd, K., Renner, P. & Schmedders, K. (2012) “Finding all Pure-
Strategy Equilibria in Games with Continuous Strategies.”

– Kubler, F, Schmedders, K. & Renner, P. (2013) “Computing all So-
lutions to Polynomial Equations in Economics.”

• If movements through the state space are undirectional, then. . .

– Judd, K. & Schmedders, K. (2004) “A Computational Approach to
Proving Uniqueness in Dynamic Games.”

– Judd, K., Schmedders, K. & Yeltekin, S. (2012) “Optimal Rules for
Patent Races.”

– Iskhakov, F., Rust, J. & Schjerning, B. (2016) “Recursive Lexico-
graphical Search: Finding all Markov Perfect Equilibria of Finite State
Directional Dynamic Games.”

– Iskhakov, F., Rust, J. & Schjerning, B. (2014) “The Dynamics of
Bertrand Price Competition with Cost-Reducing Investments.”



Sources of Computational Burden

• State space:

– Suppose that each of N players can be at one of L states.

– State space has LN elements.

– Symmetry reduces exponential to polynomial growth.

• Successor states:

– Suppose that each of N players can move to one of K

states from one period to the next.

– Expectation over successor states involves KN terms.



Alleviating the Computational Burden

System of equations:

• Ferris, M., Judd, K. & Schmedders, K. (2007) “Solving Dynamic Games
with Newton’s Method.”

Ergodic set:

• Pakes, A. & McGuire, P. (2001) “Stochastic Algorithms, Symmetric
Markov Perfect Equilibrium, and the ‘Curse’ of Dimensionality.”

• Judd, K., Maliar, L. & Maliar, S. (2012) “Merging Simulation and Pro-
jection Approaches to Solve High-Dimensional Problems.”

State aggregation and interpolation methods:

• Farias, V., Saure, D. & Weintraub, G. (2012) “An Approximate Dynamic
Programming Algorithm to Solving Dynamic Oligopoly Models”

• Santos, C. (2012) “An Aggregation Method to Solve Dynamic Games”

• Arcidiacono, P., Bayer, P., Bugni, F. & James, J. (2011) “Sieve Value
Function Iteration for Large State Space Dynamic Games.”

• Aguirregabiria, V. and Vincentini, G. (2012) “Dynamic Spatial Compe-
tition Between Multi-Store Firms.”



Alleviating the Computational Burden

Oblivious equilibrium and its extensions:

• Weintraub, G., Benkard, L. & Van Roy, B. (2008) “Markov Perfect
Industry Dynamics with Many Firms.”

• Weintraub, G., Benkard, L. & Van Roy, B. (2010) “Computational Meth-
ods for Oblivious Equilibrium.”

• Weintraub, G., Benkard, L. Jeziorski, P. & Van Roy, B. (2008) “Nonsta-
tionary Oblivious Equilibrium.”

• Benkard, L., Jeziorski, P. & Weintraub, G., (2015) “Oblivious Equilibrium
for Concentrated Industries.”

• Ifrach, B. and Weintraub, G. (2016) “A Framework for Dynamic Oligopoly
in Concentrated Industries.”



Alleviating the Computational Burden

Continuous-time stochastic games:

• Doraszelski, U. & Judd, K. (2011) “Avoiding the Curse of Dimensionality
in Dynamic Stochastic Games.”

• Arcidiacono, P. Bayer, P. Blevins, J. & Ellickson (2016) “Estimation of
Dynamic Discrete Choice Models in Continuous Time with an Application
to Retail Competition.”

Discrete-time stochastic games with alternating moves:

• Doraszelski, U. & Judd, K. (2007) “Dynamic Stochastic Games with
Sequential State-to-State Transitions.”

• Doraszelski, U. & Escobar, J. (2016) “Protocol Invariance and the Tim-
ing of Decisions in Dynamic Games.”



Open Questions

What do we know about the general properties of the set of equilibria?

• Doraszelski, U. & Escobar, J. (2010) “A Theory of Regular Markov
Perfect Equilibria in Dynamic Stochastic Games: Genericity, Stability,
and Purification.”

What types of behaviors can arise?

• Besanko, D., Doraszelski, U., Kryukov, Y. & Satterthwaite, M. (2010)
“Learning-by-Doing, Organizational Forgetting, and Industry Dynamics.”

• Yeltekin, S, Chai, Y. & Judd, K. (2016) “Computing Equilibria of Dy-
namic Games.”

• Doraszelski, U. & Escobar, J. (2012) “Restricted Feedback in Long Term
Relationships.”

• Balbus, L., Reffett, K. & Wozny, L. (2010) “A Constructive Study of
Markov Equilibria in Stochastic Games with Strategic Complementari-
ties.”



Open Questions

How can we deal with persistent asymmetric information?

• Fershtman, C. & Pakes, A. (2012) “Dynamic Games With

Asymmetric Information: A Framework For Empirical Work.”

• Asker, J., Fershtman, C., Jeon, J. & Pakes, A. (2016) “The

Competitive Effects of Information Sharing.”

• Bernhardt, D. & Taub, B. (2012) “Oligopoly Learning Dy-

namics.”


