Dynamic Games:
 Numerical Methods and Applications

Mini Course, Tel Aviv University, Day 4
Prof. Ulrich Doraszelski, University of Pennsylvania

Agenda

- Discussion of problem set.
- Computing all equilibria: Homotopy method.
- Computational burden.
- Open questions.

Learning-by-Doing

- Besanko, D., Doraszelski, U., Kryukov, S. \& Satterthwaite, M. (2010) "Learning-byDoing, Organizational Forgetting, and Industry Dynamics."
- Discrete time, infinite horizon.
- Two firms with potentially different stocks of know-how

$$
\omega=\left(\omega_{1}, \omega_{2}\right) \in\{1, \ldots, L\}^{2}=\Omega .
$$

- In each period, the timing is as follows:
- Firms choose prices.
- One buyer enters the market and makes at most one purchase.
- Learning-by-doing and organizational forgetting occur and the firms' stocks of know-how change accordingly.
- Law of motion:
where

$$
\omega_{n}^{\prime}=\omega_{n}+q_{n}-f_{n},
$$

- $q_{n} \in\{0,1\}$ indicates whether firm n makes a sale with

$$
\operatorname{Pr}\left(q_{n}=1\right)=D_{n}\left(p_{1}, p_{2}\right)=\frac{\exp \left(v-p_{n}\right)}{1+\sum_{k=1}^{2} \exp \left(v-p_{k}\right)}
$$

- $f_{n} \in\{0,1\}$ represents organizational forgetting with

$$
\operatorname{Pr}\left(f_{n}=1\right)=\Delta\left(\omega_{n}\right)=1-(1-\delta)^{\omega_{n}} .
$$

Bellman Equation

- Let $V_{n}(\omega)$ denote the expected NPV to firm n if the current state is ω.
- Firm n's Bellman equation is

$$
V_{n}(\omega)=\max _{p_{n}} D_{n}\left(p_{n}, p_{-n}(\omega)\right)\left(p_{n}-c\left(\omega_{n}\right)\right)+\beta \sum_{k=0}^{2} D_{k}\left(p_{n}, p_{-n}(\omega)\right) W_{n k}(\omega),
$$

where

- $p_{-n}(\omega)$ is the price charged by the other firm;
- the marginal cost of production is

$$
c\left(\omega_{n}\right)=\left\{\begin{array}{ccc}
\kappa \omega_{n}^{\eta} & \text { if } & 1 \leq \omega_{n}<l, \\
\kappa l^{\eta} & \text { if } & l \leq \omega_{n} \leq L,
\end{array}\right.
$$

with $\eta=\log _{2} \rho$ for a progress ratio of ρ;
$-\beta \in(0,1)$ is the discount factor;

- $W_{n k}(\omega)$ is the expectation of firm n 's value function conditional on buyer purchasing good $k \in\{0,1,2\}$ (good 0 is outside good).

Bellman Equation

- Continuation values:

$$
\begin{aligned}
& W_{n 0}(\omega)=\sum_{\omega_{1}^{\prime}=1}^{L} \sum_{\omega_{2}^{\prime}=1}^{L} V_{n}\left(\omega^{\prime}\right) \operatorname{Pr}\left(\omega_{1}^{\prime} \mid \omega_{1}, q_{1}=0\right) \operatorname{Pr}\left(\omega_{2}^{\prime} \mid \omega_{2}, q_{2}=0\right) \\
& W_{n 1}(\omega)=\sum_{\omega_{1}^{\prime}=1}^{L} \sum_{\omega_{2}^{\prime}=1}^{L} V_{n}\left(\omega^{\prime}\right) \operatorname{Pr}\left(\omega_{1}^{\prime} \mid \omega_{1}, q_{1}=1\right) \operatorname{Pr}\left(\omega_{2}^{\prime} \mid \omega_{2}, q_{2}=0\right) \\
& W_{n 2}(\omega)=\sum_{\omega_{1}^{\prime}=1}^{L} \sum_{\omega_{2}^{\prime}=1}^{L} V_{n}\left(\omega^{\prime}\right) \operatorname{Pr}\left(\omega_{1}^{\prime} \mid \omega_{1}, q_{1}=0\right) \operatorname{Pr}\left(\omega_{2}^{\prime} \mid \omega_{2}, q_{2}=1\right)
\end{aligned}
$$

where

$$
\operatorname{Pr}\left(\omega_{n}^{\prime} \mid \omega_{n}, q_{n}\right)=\left\{\begin{array}{ccc}
1-\Delta\left(\omega_{n}\right) & \text { if } & \omega_{n}^{\prime}=\omega_{n}+q_{n} \\
\Delta\left(\omega_{n}\right) & \text { if } & \omega_{n}^{\prime}=\omega_{n}+q_{n}-1,
\end{array}\right.
$$

and $\operatorname{Pr}\left(L \mid L, q_{n}=1\right)=1$ and $\operatorname{Pr}\left(1 \mid 1, q_{n}=0\right)=1$.

Pricing Strategy

- $p_{n}(\omega)$ is unique solution to FOC:

$$
\begin{gathered}
0=1-\left(1-D_{n}\left(p_{n}, p_{-n}(\omega)\right)\right)\left(p_{n}-c\left(\omega_{n}\right)\right)-\beta W_{n n}(\omega) \\
+\beta \sum_{k=0}^{2} D_{k}\left(p_{n}, p_{-n}(\omega)\right) W_{n k}(\omega) .
\end{gathered}
$$

- No closed-firm solution. Solve numerically.

Equilibrium

- Primitives are symmetric.
- Symmetric Markov perfect equilibrium (MPE):
- Value function $V_{1}\left(\omega_{1}, \omega_{2}\right)=V\left(\omega_{1}, \omega_{2}\right)$ and $V_{2}\left(\omega_{1}, \omega_{2}\right)=V\left(\omega_{2}, \omega_{1}\right)$.
- Policy function $p_{1}\left(\omega_{1}, \omega_{2}\right)=p\left(\omega_{1}, \omega_{2}\right)$ and $p_{2}\left(\omega_{1}, \omega_{2}\right)=p\left(\omega_{2}, \omega_{1}\right)$.
- Existence in pure strategies is guaranteed (Doraszelski \& Satterthwaite 2010), uniqueness is not.
- The goal is to compute the value and policy functions (or, more precisely, $L \times L$ matrices) \mathbf{V} and \mathbf{p}.

Multiple Equilibria

Proposition 1 If organizational forgetting is either absent ($\delta=0$) or certain ($\delta=1$), then there is a unique equilibrium.

Result 1 If organizational forgetting is neither absent ($\delta=0$) nor certain ($\delta=1$), then there may be multiple equilibria.

Homotopy Method

- Besanko, D., Doraszelski, U., Kryukov, S. \& Satterthwaite, M. (2010) "Learning-by-Doing, Organizational Forgetting, and Industry Dynamics."

Additional reading:

- Borkovsky, R., Doraszelski, U., \& Kryukov, Y. (2010) "A User's Guide to Solving Dynamic Stochastic Games Using the Homotopy Method."
- Show that there are equilibria that the Pakes \& McGuire (1994) algorithm cannot compute.
- Propose a homotopy algorithm to trace out the equilibrium correspondence.

Homotopy Method: Learning-by-Doing

- Bellman equation and FOC for state ω are

$$
\begin{gathered}
V(\omega)=D_{1}(\omega)\left(p(\omega)-c\left(\omega_{1}\right)\right)+\beta \sum_{k=0}^{2} D_{k}(\omega) W_{k}(\omega), \\
0=1-\left(1-D_{1}(\omega)\right)\left(p(\omega)-c\left(\omega_{1}\right)\right)-\beta W_{1}(\omega)+\beta \sum_{k=0}^{2} D_{k}(\omega) W_{k}(\omega),
\end{gathered}
$$

where $D_{k}(\omega)=D_{k}\left(p(\omega), p\left(\omega_{2}, \omega_{1}\right)\right), k \in\{0,1,2\}$.

- The system of $2 L^{2}$ nonlinear equations given by the collection of the above equations for each state $\omega \in\{1, \ldots, L\}^{2}$ defines a symmetric equilibrium.

Homotopy Method: Learning-by-Doing

- Write the system of $2 L^{2}$ nonlinear equations (Bellman equations and FOCs) as

$$
\mathrm{F}(\mathrm{x}, \delta)=0,
$$

where

$$
\mathrm{x}=(V(1,1), \ldots, V(L, L), p(1,1), \ldots, p(L, L)) .
$$

- The object of interest is the equilibrium correspondence

$$
\mathbf{F}^{-1}=\{(\mathrm{x}, \delta) \mid \mathbf{F}(\mathrm{x}, \delta)=0\} .
$$

- The homotopy algorithm follows a path from the unique equilibrium at $\delta=0$ to the unique equilibrium at $\delta=1$.

Equilibrium correspondence \mathbf{F}^{-1} for simple example.

Homotopy Method

- Define a parametric path to be a set of functions (x $(s), \delta(s))$ such that $(\mathrm{x}(s), \delta(s)) \in \mathbf{F}^{-1}$.
- The conditions that are required to remain "on path" are found by differentiating

$$
\mathbf{F}(\mathrm{x}(s), \delta(s))=0
$$

with respect to s :

$$
\sum_{i=1}^{2 L^{2}} \frac{\partial \mathbf{F}(\mathrm{x}(s), \delta(s))}{\partial x_{i}} x_{i}^{\prime}(s)+\frac{\partial \mathbf{F}(\mathrm{x}(s), \delta(s))}{\partial \delta} \delta^{\prime}(s)=0 .
$$

- While there are many solutions, all of them describe the same path.
- One solution obeys the so-called basic differential equations (BDE)

$$
\begin{equation*}
y_{i}^{\prime}(s)=(-1)^{i+1} \operatorname{det}\left(\left(\frac{\partial \mathbf{F}(\mathbf{y}(s))}{\partial \mathbf{y}}\right)_{-i}\right), \quad i=1, \ldots, 2 L^{2}+1 \tag{1}
\end{equation*}
$$

where $\mathrm{y}(s)=(\mathrm{x}(s), \delta(s))$ and the notation $(\cdot)_{-i}$ is used to indicate that the i th column is removed from the $\left(2 L^{2} \times 2 L^{2}+1\right)$ Jacobian $\frac{\partial \mathbf{F}(\mathrm{y}(s))}{\partial \mathrm{y}}$.

- The BDE reduce the task of tracing out the equilibrium correspondence to solving a system of differential equations.

Homotopy Method: Simple Example

- Consider

$$
F(x, \delta)=-15.289-\frac{\delta}{1+\delta^{4}}+67.500 x-96.923 x^{2}+46.154 x^{3}
$$

with

$$
\frac{\partial F(x, \delta)}{\partial(x, \delta)}=\left(67.500-2 \cdot 96.923 x+3 \cdot 46.154 x^{2}-\frac{1-3 \delta^{4}}{\left(1+\delta^{4}\right)^{2}}\right)
$$

- Basic differential equations:

$$
\binom{\frac{d x}{d s}}{\frac{d \delta}{d s}}=\left(\begin{array}{c}
\frac{\partial F(x, \delta)}{\partial \delta} \\
-\frac{1-3 \delta^{4}}{\left(1+\delta^{4}\right)^{2}} \\
\partial x
\end{array}\right)=\left(\begin{array}{c}
\\
-67.500+2 \cdot 96.923 x-3 \cdot 46.154 x^{2}
\end{array}\right)
$$

with initial condition $x(0)=0.5$ and $\delta(0)=0$.

- Solve with e.g. finite-difference methods.

Equilibrium correspondence \mathbf{F}^{-1} for simple example.

Homotopy Method

- The homotopy \mathbf{F} is regular iff $\frac{\partial \mathbf{F}(\mathbf{y})}{\partial \mathbf{y}}$ has full rank at all points in \mathbf{F}^{-1}.

\mathbf{F}^{-1} if \mathbf{F} is regular (left panel) and irregular (right panel).

Equilibrium Correspondence: Learning-by-Doing

Result 2 The equilibrium correspondence \mathbf{F}^{-1} contains a unique path that connects the equilibrium at $\delta=0$ with the equilibrium at $\delta=1$. In addition, \mathbf{F}^{-1} may contain (one or more) loops that are disjoint from this "main path" and from each other.

Limiting expected Herfindahl index H^{∞}. Equilibria with $\varrho\left(\left.\frac{\partial \mathbf{G}(\mathbf{x}(s))}{\partial \mathbf{x}}\right|_{\delta(s)}\right)<1$ (solid line) and equilibria with $\varrho\left(\left.\frac{\partial \mathbf{G}(\mathrm{x}(s))}{\partial \mathbf{x}}\right|_{\delta(s)}\right) \geq 1$ (dotted line).

Pakes \& McGuire (1994) Algorithm

- Executes the iteration

$$
\mathrm{x}^{l+1}=\mathrm{G}\left(\mathrm{x}^{l}\right), \quad l=0,1,2, \ldots
$$

where, for each state $\omega \in\{1, \ldots, L\}^{2}$, old guesses for the value and policy of firm 1 are mapped into new guesses as follows:

$$
\begin{aligned}
& p^{l+1}(\omega)= \arg \max _{p_{1}} D_{1}\left(p_{1}, p^{l}\left(\omega_{2}, \omega_{1}\right)\right)\left(p_{1}-c\left(\omega_{1}\right)\right) \\
&+\beta \sum_{k=0}^{2} D_{k}\left(p_{1}, p^{l}\left(\omega_{2}, \omega_{1}\right)\right) W_{k}^{l}(\omega) \\
& V^{l+1}(\omega)=\quad D_{1}\left(p^{l+1}(\omega), p^{l}\left(\omega_{2}, \omega_{1}\right)\right)\left(p^{l+1}(\omega)-c\left(\omega_{1}\right)\right) \\
&+\beta \sum_{k=0}^{2} D_{k}\left(p^{l+1}(\omega), p^{l}\left(\omega_{2}, \omega_{1}\right)\right) W_{k}^{l}(\omega)
\end{aligned}
$$

- Let A be an arbitrary matrix and $\varrho(A)$ its spectral radius. Local convergence depends on $\varrho\left(\frac{\partial G\left(x^{*}\right)}{\partial x}\right)$ at the fixed point $x^{*}=G\left(x^{*}\right)$.

Pakes \& McGuire (1994) Algorithm

- "Inbetween" two equilibria that can be computed using the Pakes \& McGuire (1994) algorithm, there is one equilibrium that cannot:

Proposition 2 If $\delta^{\prime}(s) \leq 0$, then $\varrho\left(\left.\frac{\partial \mathbf{G}(\mathrm{x}(s))}{\partial \mathrm{x}}\right|_{\delta(s)}\right) \geq 1$.

- Let I denote the $\left(2 L^{2} \times 2 L^{2}\right)$ identity matrix. Then

$$
\left.\frac{\partial \mathbf{G}(\mathrm{x}(s))}{\partial \mathbf{x}}\right|_{\delta(s)}=\frac{\partial \mathbf{F}(\mathrm{x}(s), \delta(s))}{\partial \mathbf{x}}+I
$$

- The BDE (1) imply

$$
\delta^{\prime}(s)=\operatorname{det}\left(\frac{\partial \mathbf{F}(\mathrm{x}(s), \delta(s))}{\partial \mathbf{x}}\right) .
$$

- Since the determinant of $\frac{\partial \mathbf{F}(\mathrm{x}(s), \delta(s))}{\partial \mathrm{x}}$ is the product of $2 L^{2}$ eigenvalues, if $\delta^{\prime}(s) \leq 0$, then there exists at least one real nonnegative eigenvalue.
- Let A be an arbitrary matrix and $\varsigma(A)$ its spectrum. Then $\varsigma(A+I)=$ $\varsigma(A)+1$.
- It follows from equation (2) that $\left.\frac{\partial \mathbf{G}(\mathrm{x}(s))}{\partial \mathrm{x}}\right|_{\delta(s)}$ has at least one real eigenvalue equal to or bigger than unity.

Equilibrium Correspondence: Learning-by-Doing

Result 3 The equilibrium correspondence \mathbf{F}^{-1} contains a unique path that connects the equilibrium at $\delta=0$ with the equilibrium at $\delta=1$. In addition, \mathbf{F}^{-1} may contain (one or more) loops that are disjoint from this "main path" and from each other.

Limiting expected Herfindahl index H^{∞}. Equilibria with $\varrho\left(\left.\frac{\partial \mathbf{G}(\mathbf{x}(s))}{\partial \mathbf{x}}\right|_{\delta(s)}\right)<1$ (solid line) and equilibria with $\varrho\left(\left.\frac{\partial \mathbf{G}(\mathrm{x}(s))}{\partial \mathbf{x}}\right|_{\delta(s)}\right) \geq 1$ (dotted line).

Alternative Approaches to Computing all Equilibria

- If the system of equations is polynomial, then...
- Judd, K., Renner, P. \& Schmedders, K. (2012) "Finding all PureStrategy Equilibria in Games with Continuous Strategies."
- Kubler, F, Schmedders, K. \& Renner, P. (2013) "Computing all Solutions to Polynomial Equations in Economics."
- If movements through the state space are undirectional, then...
- Judd, K. \& Schmedders, K. (2004) "A Computational Approach to Proving Uniqueness in Dynamic Games."
- Judd, K., Schmedders, K. \& Yeltekin, S. (2012) "Optimal Rules for Patent Races."
- Iskhakov, F., Rust, J. \& Schjerning, B. (2016) "Recursive Lexicographical Search: Finding all Markov Perfect Equilibria of Finite State Directional Dynamic Games."
- Iskhakov, F., Rust, J. \& Schjerning, B. (2014) "The Dynamics of Bertrand Price Competition with Cost-Reducing Investments."

Sources of Computational Burden

- State space:
- Suppose that each of N players can be at one of L states.
- State space has L^{N} elements.
- Symmetry reduces exponential to polynomial growth.
- Successor states:
- Suppose that each of N players can move to one of K states from one period to the next.
- Expectation over successor states involves K^{N} terms.

Alleviating the Computational Burden

System of equations:

- Ferris, M., Judd, K. \& Schmedders, K. (2007) "Solving Dynamic Games with Newton's Method."

Ergodic set:

- Pakes, A. \& McGuire, P. (2001) "Stochastic Algorithms, Symmetric Markov Perfect Equilibrium, and the 'Curse' of Dimensionality."
- Judd, K., Maliar, L. \& Maliar, S. (2012) "Merging Simulation and Projection Approaches to Solve High-Dimensional Problems."

State aggregation and interpolation methods:

- Farias, V., Saure, D. \& Weintraub, G. (2012) "An Approximate Dynamic Programming Algorithm to Solving Dynamic Oligopoly Models"
- Santos, C. (2012) "An Aggregation Method to Solve Dynamic Games"
- Arcidiacono, P., Bayer, P., Bugni, F. \& James, J. (2011) "Sieve Value Function Iteration for Large State Space Dynamic Games."
- Aguirregabiria, V. and Vincentini, G. (2012) "Dynamic Spatial Competition Between Multi-Store Firms."

Alleviating the Computational Burden

Oblivious equilibrium and its extensions:

- Weintraub, G., Benkard, L. \& Van Roy, B. (2008) "Markov Perfect Industry Dynamics with Many Firms."
- Weintraub, G., Benkard, L. \& Van Roy, B. (2010) "Computational Methods for Oblivious Equilibrium."
- Weintraub, G., Benkard, L. Jeziorski, P. \& Van Roy, B. (2008) "Nonstationary Oblivious Equilibrium."
- Benkard, L., Jeziorski, P. \& Weintraub, G., (2015) "Oblivious Equilibrium for Concentrated Industries."
- Ifrach, B. and Weintraub, G. (2016) "A Framework for Dynamic Oligopoly in Concentrated Industries."

Alleviating the Computational Burden

Continuous-time stochastic games:

- Doraszelski, U. \& Judd, K. (2011) "Avoiding the Curse of Dimensionality in Dynamic Stochastic Games."
- Arcidiacono, P. Bayer, P. Blevins, J. \& Ellickson (2016) "Estimation of Dynamic Discrete Choice Models in Continuous Time with an Application to Retail Competition."

Discrete-time stochastic games with alternating moves:

- Doraszelski, U. \& Judd, K. (2007) "Dynamic Stochastic Games with Sequential State-to-State Transitions."
- Doraszelski, U. \& Escobar, J. (2016) "Protocol Invariance and the Timing of Decisions in Dynamic Games."

Open Questions

What do we know about the general properties of the set of equilibria?

- Doraszelski, U. \& Escobar, J. (2010) "A Theory of Regular Markov Perfect Equilibria in Dynamic Stochastic Games: Genericity, Stability, and Purification."

What types of behaviors can arise?

- Besanko, D., Doraszelski, U., Kryukov, Y. \& Satterthwaite, M. (2010) "Learning-by-Doing, Organizational Forgetting, and Industry Dynamics."
- Yeltekin, S, Chai, Y. \& Judd, K. (2016) "Computing Equilibria of Dynamic Games."
- Doraszelski, U. \& Escobar, J. (2012) "Restricted Feedback in Long Term Relationships."
- Balbus, L., Reffett, K. \& Wozny, L. (2010) "A Constructive Study of Markov Equilibria in Stochastic Games with Strategic Complementarities."

Open Questions

How can we deal with persistent asymmetric information?

- Fershtman, C. \& Pakes, A. (2012) "Dynamic Games With Asymmetric Information: A Framework For Empirical Work."
- Asker, J., Fershtman, C., Jeon, J. \& Pakes, A. (2016) "The Competitive Effects of Information Sharing."
- Bernhardt, D. \& Taub, B. (2012) "Oligopoly Learning Dynamics."

